PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m445–m446.
Published online 2010 March 24. doi:  10.1107/S1600536810010305
PMCID: PMC2983905

{6-[(2-Anilinoeth­yl)imino­meth­yl]-2-eth­oxyphenolato}(thio­cyanato-κN)­copper(II)

Abstract

In the title complex, [Cu(C17H19N2O2)(NCS)], the CuII atom is chelated by the phenolate O atom, the imine N atom and the amine N atom of the N,N′,O-tridentate 2-eth­oxy-6-[(2-anilino­ethyl)­iminometh­yl]phenolate ligand, and by the N atom of a thio­cyanate anion, forming a distorted CuON3 square-planar geometry. The dihedral angle between the aromatic rings of the ligand is 67.9 (4)°. In the crystal, inversion dimers linked by pairs of N—H(...)O hydrogen bonds occur, generating R 2 2(8) loops.

Related literature

For background to the structures and properties of copper complexes, see: Collinson & Fenton (1996 [triangle]); Hossain et al. (1996 [triangle]); Tarafder et al. (2002 [triangle]); Musie et al. (2003 [triangle]); García-Raso et al. (2003 [triangle]); Reddy et al. (2000 [triangle]); Ray et al. (2003 [triangle]); Arnold et al. (2003 [triangle]); Raptopoulou et al. (1998 [triangle]). For related structures, see: Wang et al. (2009a [triangle],b [triangle]); Wang (2009 [triangle]); Hebbachi & Benali-Cherif (2005 [triangle]); Butcher et al. (2003 [triangle]); Elmali et al. (2000 [triangle]); Warda et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m445-scheme1.jpg

Experimental

Crystal data

  • [Cu(C17H19N2O2)(NCS)]
  • M r = 404.96
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m445-efi1.jpg
  • a = 13.6786 (5) Å
  • b = 10.4938 (4) Å
  • c = 25.2618 (10) Å
  • V = 3626.1 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.34 mm−1
  • T = 298 K
  • 0.30 × 0.27 × 0.27 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.690, T max = 0.714
  • 19741 measured reflections
  • 3746 independent reflections
  • 2041 reflections with I > 2σ(I)
  • R int = 0.069

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.182
  • S = 1.03
  • 3746 reflections
  • 229 parameters
  • 13 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.25 e Å−3
  • Δρmin = −0.64 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810010305/hb5365sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010305/hb5365Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of China (grant No. 30771696), the Natural Science Foundation of Zhejiang Province (grant No. Y407318) and the Science and Technology Plan of Huzhou (grant No. 2009 GG06).

supplementary crystallographic information

Comment

Copper(II) complexes have been received much attention for their versatile biological activities and interesting structures (Collinson & Fenton, 1996; Hossain et al., 1996; Tarafder et al., 2002; Musie et al., 2003; García-Raso et al., 2003). Considerable effort has been made to construct a variety of copper(II) complexes in an attempt to model the physical and chemical behaviour of copper-containing enzymes (Reddy et al., 2000). The peculiarity of copper lies in its ability to form complexes with coordination number four, five, and six (Ray et al., 2003; Arnold et al., 2003; Raptopoulou et al., 1998).

As part of our onging investigations into urease inhibitors (Wang et al., 2009a,b; Wang, 2009), we have synthesized the title compound, (I), a new CuII complex, and its crystal structure is reported here. The CuII atom in the complex is chelated by the phenolate O atom, imine N atom, and the amine N atom of 2-ethoxy-6-[(2-phenylaminoethylimino)methyl]phenolate, and by the N atom of a thiocyanate ligand, giving a square planar geometry (Fig. 1). The coordinate bond lengths and angles (Table 1) are typical and are comparable with those observed in other related copper(II) complexes (Hebbachi & Benali-Cherif, 2005; Butcher et al., 2003; Elmali et al., 2000; Warda et al., 1997).

Experimental

3-Ethoxysalicylaldehyde (1.0 mmol, 166 mg), N-phenyl-1,2-diaminoethane (1.0 mmol, 136 mg), ammonium thiocyanate (1.0 mmol, 76 mg), and Cu(CH3COO)2.H2O (1.0 mmol, 200 mg) were dissolved in methanol (80 ml). The mixture was stirred at room temperature for about 1 h to give a blue solution. After keeping the solution in air for a few days, blue blocks of (I) were formed.

Refinement

H2 was located from a difference Fourier map and refined isotropically, with N—H distance of 0.90 (1) Å. Other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93-0.97 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(C17).

Figures

Fig. 1.
The molecular structure of (I), showing displacement ellipsoids drawn at the 30% probability level.

Crystal data

[Cu(C17H19N2O2)(NCS)]F(000) = 1672
Mr = 404.96Dx = 1.484 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2506 reflections
a = 13.6786 (5) Åθ = 2.4–24.9°
b = 10.4938 (4) ŵ = 1.34 mm1
c = 25.2618 (10) ÅT = 298 K
V = 3626.1 (2) Å3Block, blue
Z = 80.30 × 0.27 × 0.27 mm

Data collection

Bruker SMART CCD diffractometer3746 independent reflections
Radiation source: fine-focus sealed tube2041 reflections with I > 2σ(I)
graphiteRint = 0.069
ω scanθmax = 26.5°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −17→16
Tmin = 0.690, Tmax = 0.714k = −13→12
19741 measured reflectionsl = −26→31

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0843P)2 + 3.6378P] where P = (Fo2 + 2Fc2)/3
3746 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 1.25 e Å3
13 restraintsΔρmin = −0.64 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.88473 (4)0.07765 (5)0.49939 (2)0.0424 (2)
O10.9189 (3)0.0617 (3)0.57256 (13)0.0498 (9)
O20.9226 (4)−0.0030 (7)0.67464 (19)0.0976 (17)
S10.82168 (12)−0.35452 (14)0.52360 (11)0.1050 (8)
N10.9061 (3)0.2590 (4)0.50007 (17)0.0454 (10)
N20.9049 (3)0.0938 (4)0.41821 (16)0.0468 (10)
N30.8557 (4)−0.1032 (4)0.49588 (17)0.0568 (12)
C10.9081 (4)0.2849 (6)0.5943 (2)0.0625 (15)
C20.9123 (4)0.1538 (6)0.6078 (2)0.0528 (14)
C30.9115 (5)0.1206 (8)0.6623 (2)0.0731 (18)
C40.9057 (6)0.2158 (12)0.7003 (3)0.108 (3)
H40.90430.19300.73580.130*
C50.9020 (7)0.3417 (12)0.6870 (4)0.123 (4)
H50.89900.40340.71340.148*
C60.9027 (5)0.3772 (8)0.6348 (4)0.094 (3)
H60.89950.46310.62600.113*
C70.9110 (4)0.3275 (5)0.5412 (3)0.0585 (15)
H70.91720.41490.53600.070*
C80.9046 (4)0.3177 (5)0.4472 (2)0.0597 (16)
H8A0.94360.39480.44710.072*
H8B0.83820.33970.43740.072*
C90.9458 (4)0.2233 (5)0.4086 (2)0.0567 (14)
H9A0.93030.25000.37280.068*
H9B1.01630.22070.41210.068*
C100.8236 (4)0.0581 (6)0.3843 (2)0.0529 (14)
C110.7402 (5)0.1237 (8)0.3838 (3)0.110 (3)
H110.73440.19550.40520.132*
C120.6615 (6)0.0878 (10)0.3522 (5)0.124 (3)
H120.60350.13390.35380.149*
C130.6683 (6)−0.0091 (11)0.3208 (3)0.092 (3)
H130.6174−0.02910.29780.110*
C140.7499 (7)−0.0807 (10)0.3217 (3)0.117 (3)
H140.7538−0.15320.30060.141*
C150.8299 (6)−0.0466 (9)0.3544 (3)0.105 (3)
H150.8861−0.09640.35510.126*
C160.8566 (12)−0.0681 (15)0.6821 (7)0.215 (7)
H16A0.8254−0.08410.64830.258*
H16B0.8102−0.02100.70360.258*
C170.8735 (8)−0.1978 (12)0.7090 (4)0.154 (4)
H17A0.8550−0.26500.68530.232*
H17B0.8348−0.20290.74060.232*
H17C0.9414−0.20650.71800.232*
C180.8418 (4)−0.2070 (5)0.5072 (2)0.0523 (13)
H20.952 (3)0.035 (4)0.413 (2)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0542 (4)0.0294 (3)0.0437 (4)−0.0002 (2)−0.0047 (3)0.0060 (3)
O10.058 (2)0.048 (2)0.0435 (19)0.0116 (17)−0.0025 (16)0.0050 (16)
O20.076 (3)0.147 (5)0.069 (3)0.005 (4)0.018 (3)0.042 (3)
S10.0524 (9)0.0341 (8)0.228 (2)−0.0038 (7)−0.0174 (12)0.0304 (11)
N10.042 (2)0.033 (2)0.061 (3)0.0013 (16)0.000 (2)0.006 (2)
N20.047 (3)0.051 (3)0.042 (2)0.003 (2)−0.0037 (19)0.006 (2)
N30.074 (3)0.034 (2)0.063 (3)−0.002 (2)−0.006 (2)0.004 (2)
C10.053 (4)0.065 (4)0.069 (4)0.000 (3)0.006 (3)−0.018 (3)
C20.047 (3)0.065 (4)0.047 (3)0.001 (3)0.002 (2)−0.005 (3)
C30.063 (4)0.102 (5)0.054 (4)0.001 (4)0.004 (3)0.006 (4)
C40.087 (6)0.182 (10)0.056 (4)−0.012 (7)0.016 (4)−0.040 (6)
C50.115 (8)0.140 (9)0.115 (8)−0.022 (7)0.028 (6)−0.067 (8)
C60.092 (6)0.083 (5)0.106 (6)−0.011 (4)0.028 (5)−0.049 (5)
C70.054 (3)0.036 (3)0.086 (5)0.003 (2)0.005 (3)−0.007 (3)
C80.058 (4)0.043 (3)0.078 (4)0.001 (3)0.004 (3)0.028 (3)
C90.045 (3)0.064 (4)0.061 (3)0.000 (3)0.003 (3)0.022 (3)
C100.045 (3)0.072 (4)0.042 (3)−0.003 (3)−0.003 (2)0.012 (3)
C110.062 (5)0.122 (7)0.146 (7)0.022 (5)−0.032 (5)−0.036 (6)
C120.068 (6)0.140 (9)0.164 (9)0.010 (5)−0.048 (6)−0.012 (7)
C130.068 (5)0.152 (8)0.056 (4)−0.039 (6)−0.019 (4)0.032 (5)
C140.092 (6)0.166 (9)0.095 (6)−0.021 (6)−0.019 (5)−0.057 (6)
C150.067 (5)0.140 (8)0.108 (6)0.007 (5)−0.015 (4)−0.053 (6)
C160.199 (10)0.184 (10)0.261 (11)0.002 (8)0.075 (8)−0.001 (8)
C170.148 (7)0.157 (8)0.158 (7)−0.017 (6)0.054 (6)0.036 (6)
C180.046 (3)0.034 (3)0.077 (4)0.001 (2)−0.007 (3)0.004 (3)

Geometric parameters (Å, °)

Cu1—O11.914 (3)C7—H70.9300
Cu1—N11.926 (4)C8—C91.499 (8)
Cu1—N31.941 (4)C8—H8A0.9700
Cu1—N22.076 (4)C8—H8B0.9700
O1—C21.316 (6)C9—H9A0.9700
O2—C161.148 (15)C9—H9B0.9700
O2—C31.342 (9)C10—C111.332 (9)
S1—C181.627 (5)C10—C151.336 (9)
N1—C71.265 (7)C11—C121.392 (11)
N1—C81.470 (6)C11—H110.9300
N2—C101.452 (7)C12—C131.294 (12)
N2—C91.489 (7)C12—H120.9300
N2—H20.901 (10)C13—C141.346 (12)
N3—C181.142 (7)C13—H130.9300
C1—C61.411 (9)C14—C151.419 (10)
C1—C71.414 (8)C14—H140.9300
C1—C21.419 (8)C15—H150.9300
C2—C31.420 (8)C16—C171.538 (17)
C3—C41.388 (11)C16—H16A0.9700
C4—C51.364 (13)C16—H16B0.9700
C4—H40.9300C17—H17A0.9600
C5—C61.371 (13)C17—H17B0.9600
C5—H50.9300C17—H17C0.9600
C6—H60.9300
O1—Cu1—N192.33 (17)C9—C8—H8A110.1
O1—Cu1—N390.50 (16)N1—C8—H8B110.1
N1—Cu1—N3176.25 (19)C9—C8—H8B110.1
O1—Cu1—N2158.24 (17)H8A—C8—H8B108.4
N1—Cu1—N284.73 (18)N2—C9—C8110.9 (4)
N3—Cu1—N293.54 (17)N2—C9—H9A109.5
C2—O1—Cu1124.9 (3)C8—C9—H9A109.5
C16—O2—C3121.6 (10)N2—C9—H9B109.5
C7—N1—C8120.6 (5)C8—C9—H9B109.5
C7—N1—Cu1125.2 (4)H9A—C9—H9B108.1
C8—N1—Cu1113.8 (3)C11—C10—C15118.3 (6)
C10—N2—C9115.3 (4)C11—C10—N2121.9 (6)
C10—N2—Cu1117.4 (3)C15—C10—N2119.7 (6)
C9—N2—Cu1106.5 (3)C10—C11—C12121.9 (8)
C10—N2—H2107 (4)C10—C11—H11119.0
C9—N2—H2109 (4)C12—C11—H11119.0
Cu1—N2—H2100 (4)C13—C12—C11120.6 (9)
C18—N3—Cu1162.8 (5)C13—C12—H12119.7
C6—C1—C7118.2 (7)C11—C12—H12119.7
C6—C1—C2119.6 (7)C12—C13—C14119.2 (7)
C7—C1—C2122.2 (5)C12—C13—H13120.4
O1—C2—C1123.5 (5)C14—C13—H13120.4
O1—C2—C3118.4 (6)C13—C14—C15120.6 (8)
C1—C2—C3118.1 (6)C13—C14—H14119.7
O2—C3—C4122.7 (7)C15—C14—H14119.7
O2—C3—C2117.5 (6)C10—C15—C14119.2 (8)
C4—C3—C2119.6 (8)C10—C15—H15120.4
C5—C4—C3122.0 (9)C14—C15—H15120.4
C5—C4—H4119.0O2—C16—C17118.8 (15)
C3—C4—H4119.0O2—C16—H16A107.6
C4—C5—C6119.9 (9)C17—C16—H16A107.6
C4—C5—H5120.0O2—C16—H16B107.6
C6—C5—H5120.0C17—C16—H16B107.6
C5—C6—C1120.8 (9)H16A—C16—H16B107.1
C5—C6—H6119.6C16—C17—H17A109.5
C1—C6—H6119.6C16—C17—H17B109.5
N1—C7—C1126.7 (5)H17A—C17—H17B109.5
N1—C7—H7116.7C16—C17—H17C109.5
C1—C7—H7116.7H17A—C17—H17C109.5
N1—C8—C9108.0 (4)H17B—C17—H17C109.5
N1—C8—H8A110.1N3—C18—S1179.6 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.90 (1)2.07 (3)2.920 (6)157 (5)

Symmetry codes: (i) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5365).

References

  • Arnold, P. J., Davies, S. C., Durrant, M. C., Griffiths, D. V., Hughes, D. L. & Sharpe, P. C. (2003). Inorg. Chim. Acta, 348, 143–149.
  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Butcher, R. J., Mockler, G. M. & McKern, O. (2003). Acta Cryst. E59, m1104–m1106.
  • Collinson, S. R. & Fenton, D. E. (1996). Coord. Chem. Rev.148, 19–40.
  • Elmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302–1304. [PubMed]
  • García-Raso, Á., Fiol, J. J., López-Zafra, A., Castro, J. A., Cabrero, A., Mata, I. & Molins, E. (2003). Polyhedron, 22, 403–409.
  • Hebbachi, R. & Benali-Cherif, N. (2005). Acta Cryst. E61, m1188–m1190.
  • Hossain, M. E., Alam, M. N., Begum, J., Ali, M. A., Nazimuddin, M., Smith, F. E. & Hynes, R. C. (1996). Inorg. Chim. Acta, 249, 207–213.
  • Musie, G. T., Li, X. & Powell, D. R. (2003). Inorg. Chim. Acta, 348, 69–74.
  • Raptopoulou, C. P., Papadopoulos, A. N., Malamatari, D. A., Ioannidis, E., Moisidis, G., Terzis, A. & Kessissoglou, D. P. (1998). Inorg. Chim. Acta, 272, 283–290.
  • Ray, M. S., Bhattacharya, R. B., Chaudhuri, S., Righi, L., Bocelli, G., Mukhopadhyay, G. & Ghosh, A. (2003). Polyhedron22, 617–624.
  • Reddy, P. A. N., Datta, R. & Chakravarty, A. R. (2000). Inorg. Chem. Commun.3, 322–324.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2547–2554.
  • Wang, C.-Y. (2009). J. Coord. Chem.62, 2860–2868.
  • Wang, C.-Y., Wu, X., Tu, S.-J. & Jiang, B. (2009a). Synth. React. Inorg. Met. Org. Nano Met. Chem.39, 78–82.
  • Wang, C.-Y., Ye, J.-Y., Lv, C.-Y., Lan, W.-Z. & Zhou, J.-B. (2009b). J. Coord. Chem.62, 2164–2171.
  • Warda, S. A., Friebel, C., Sivý, J., Plesch, G. & Bláhová, M. (1997). Acta Cryst. C53, 50–54.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography