PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o948.
Published online 2010 March 27. doi:  10.1107/S1600536810010901
PMCID: PMC2983904

endo-3,3-Dimethyl-4-oxobicyclo­[3.1.0]hexan-2-yl methane­sulfonate

Abstract

The relative configuration of the endo isomer of the title compound, C9H14O4S, has been established and the conformation of the diastereoisomer is discussed. The five-membered ring adopts an envelope conformation. The conformation of the methane­sulfonate substituent is stabilized by inter­molecular C—H(...)O hydrogen bonds. The crystal packing results in alternating layers of polar methane­sulfonates and stacked bicyclo­hexa­nyl rings parallel to ab.

Related literature

For related enanti­oselective syntheses, see: Krief (1994 [triangle]); Krief et al. (2000 [triangle]). For puckering parameters and theoretical torsion angles, see: Cremer & Pople (1975 [triangle]); Dunitz (1979 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o948-scheme1.jpg

Experimental

Crystal data

  • C9H14O4S
  • M r = 218.27
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o948-efi1.jpg
  • a = 5.8558 (3) Å
  • b = 7.7497 (4) Å
  • c = 12.2527 (6) Å
  • α = 84.290 (4)°
  • β = 79.531 (4)°
  • γ = 72.070 (5)°
  • V = 519.66 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.30 mm−1
  • T = 293 K
  • 0.35 × 0.14 × 0.12 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini ultra Mo) detector
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009 [triangle]) T min = 0.904, T max = 0.966
  • 6128 measured reflections
  • 3432 independent reflections
  • 2283 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.130
  • S = 0.99
  • 3432 reflections
  • 130 parameters
  • H-atom parameters constrained
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97 .

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810010901/dn2550sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010901/dn2550Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported in part by the Fonds National de la Recherche Scientifique (FNRS, Belgium).

supplementary crystallographic information

Comment

In the course of a work involving the enantioselective synthesis of didesmethyl-deltametrinic acid (Krief et al., 2000; Krief, 1994) both the exo and endo isomers of 3,3-dimethyl-4-oxobicyclo[3.1.0]hexan-2-yl methanesulfonate were synthesized and characterized.

The X-ray crystallography study reported here determined the relative stereochemistry of the endo diasteroisomer : C(1) S, C(4) R, and C(5) R. The compound crystallizing in a centrosymetric space group, one obtains the racemic mixture S,R,R/R,S,S.

The five-membered ring C1—C5 adopts an envelope conformation. Puckering parameter Phi is 260.1 (8)° and close to the expected value of k x 36° (Cremer & Pople, 1975), suggesting that the presence of a sp2 carbon (C2) in the five-membered ring does not significantly distort its conformation. The observed values of torsion angles defining the C1—C5 ring (Table 1) fairly well follow the theoretical sequence of torsion angles -ω1, ω2, -ω2, ω1 and 0 (Dunitz, 1979) characteristic of an envelope conformation.

Atom C6 of the fused three-membered ring deviates by +1.250 (2) Å from the mean plane defined by the five atoms of the C1—C5 ring (Figure 1).

Steric effects resulting from C6 being in cis of the mesylate substituent on O2, constrain the conformation of the methanesulfonate group. Positions of the oxygen atoms O3 and O4 of the sulfonate group are further explained by intra and intermolecular CH···O hydrogen bondings. Indeed O3 forms an intramolecular H bond [O3···H4 = 2.81 Å] with H4 of C4 that carries the mesylate. An intermolecular H bond with H4 further involves O4 [C(4)—H4 ··· O4i: D···A = 3.302 (4) Å; H···A = 2.48 Å; D - H···A = 141°, i = x-1,y,z].

Packing is also reinforced by van der Waals interactions resulting in alterning layers of polar methanesulfonates and stacked bicyclohexanyl rings parallel to the ab cell planes.

Experimental

Synthesis of the compound will be detailed elsewhere.

Crystals were obtained by evaporation at 5°C of solutions in diethylether.

Refinement

All H atoms were placed at idealized positions and allowed to ride on their parent atoms, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene groups and Uiso(H) = 1.5Ueq(C) for the methyl group.

Figures

Fig. 1.
Conformation (ORTEP view) of the title compound. Only H atoms on chiral carbons have been retained for clarity. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Crystal data

C9H14O4SZ = 2
Mr = 218.27F(000) = 232
Triclinic, P1Dx = 1.395 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8558 (3) ÅCell parameters from 2686 reflections
b = 7.7497 (4) Åθ = 3.2–32.6°
c = 12.2527 (6) ŵ = 0.30 mm1
α = 84.290 (4)°T = 293 K
β = 79.531 (4)°Prism, colorless
γ = 72.070 (5)°0.35 × 0.14 × 0.12 mm
V = 519.66 (5) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini ultra Mo) detector3432 independent reflections
Radiation source: fine-focus sealed tube2283 reflections with I > 2σ(I)
graphiteRint = 0.019
Detector resolution: 10.3712 pixels mm-1θmax = 32.6°, θmin = 3.2°
ω scansh = −8→8
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)k = −8→11
Tmin = 0.904, Tmax = 0.966l = −18→18
6128 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.0721P)2] where P = (Fo2 + 2Fc2)/3
3432 reflections(Δ/σ)max < 0.001
130 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1819 (3)0.4668 (2)0.66360 (15)0.0492 (4)
H10.06680.40500.65080.059*
C20.1965 (3)0.6346 (2)0.59887 (13)0.0422 (3)
C30.2668 (3)0.75983 (19)0.66753 (13)0.0377 (3)
C40.2405 (3)0.6746 (2)0.78727 (12)0.0383 (3)
H40.09500.75020.83230.046*
C50.2143 (3)0.4885 (2)0.78131 (14)0.0474 (4)
H50.11870.44000.84390.057*
C60.4088 (4)0.3618 (2)0.70955 (15)0.0534 (4)
H6A0.43450.23300.72650.064*
H6B0.55580.39560.68140.064*
C70.5212 (3)0.7725 (3)0.61787 (15)0.0556 (5)
H7A0.63660.65390.61940.083*
H7B0.56460.85150.66060.083*
H7C0.52160.82020.54250.083*
C80.0812 (4)0.9504 (2)0.66350 (19)0.0642 (5)
H8A0.12261.03000.70660.096*
H8B−0.07870.94250.69350.096*
H8C0.08430.99720.58790.096*
C90.2608 (3)0.7738 (2)1.04091 (14)0.0503 (4)
H9A0.25480.86191.09200.075*
H9B0.31730.65401.07400.075*
H9C0.10120.79301.02350.075*
O10.1502 (3)0.67456 (18)0.50596 (10)0.0606 (4)
O20.4535 (2)0.64888 (14)0.84223 (9)0.0421 (3)
O30.3691 (3)0.97232 (17)0.87030 (11)0.0717 (4)
O40.7018 (2)0.7375 (2)0.94357 (12)0.0761 (5)
S10.45905 (8)0.79673 (6)0.91953 (3)0.04398 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0598 (11)0.0458 (9)0.0546 (10)−0.0288 (8)−0.0180 (8)−0.0019 (7)
C20.0405 (8)0.0438 (8)0.0452 (8)−0.0140 (7)−0.0116 (6)−0.0025 (7)
C30.0408 (8)0.0344 (7)0.0426 (8)−0.0156 (6)−0.0133 (6)0.0027 (6)
C40.0353 (7)0.0398 (8)0.0421 (8)−0.0143 (6)−0.0058 (6)−0.0031 (6)
C50.0589 (10)0.0487 (9)0.0438 (9)−0.0314 (8)−0.0089 (7)0.0059 (7)
C60.0680 (12)0.0369 (8)0.0601 (11)−0.0172 (8)−0.0211 (9)0.0017 (7)
C70.0600 (11)0.0673 (12)0.0508 (10)−0.0390 (10)−0.0052 (8)0.0036 (9)
C80.0767 (14)0.0400 (9)0.0783 (13)−0.0074 (9)−0.0359 (11)−0.0025 (9)
C90.0526 (10)0.0515 (10)0.0414 (8)−0.0116 (8)0.0001 (7)−0.0030 (7)
O10.0771 (9)0.0638 (8)0.0499 (7)−0.0244 (7)−0.0290 (6)0.0015 (6)
O20.0476 (6)0.0399 (6)0.0409 (6)−0.0116 (5)−0.0131 (5)−0.0061 (4)
O30.1261 (14)0.0447 (7)0.0544 (8)−0.0425 (8)−0.0113 (8)0.0004 (6)
O40.0484 (8)0.1248 (13)0.0661 (9)−0.0348 (8)−0.0039 (6)−0.0363 (9)
S10.0507 (3)0.0491 (2)0.0385 (2)−0.02405 (19)−0.00324 (16)−0.00920 (16)

Geometric parameters (Å, °)

C1—C21.472 (2)C6—H6B0.9700
C1—C61.503 (2)C7—H7A0.9600
C1—C51.521 (2)C7—H7B0.9600
C1—H10.9800C7—H7C0.9600
C2—O11.2066 (19)C8—H8A0.9600
C2—C31.534 (2)C8—H8B0.9600
C3—C71.532 (2)C8—H8C0.9600
C3—C81.543 (2)C9—S11.7429 (17)
C3—C41.549 (2)C9—H9A0.9600
C4—O21.4747 (17)C9—H9B0.9600
C4—C51.506 (2)C9—H9C0.9600
C4—H40.9800O2—S11.5687 (11)
C5—C61.467 (3)O3—S11.4156 (14)
C5—H50.9800O4—S11.4287 (14)
C6—H6A0.9700
C2—C1—C6114.72 (14)C1—C6—H6A117.6
C2—C1—C5107.13 (13)C5—C6—H6B117.6
C6—C1—C558.06 (11)C1—C6—H6B117.6
C2—C1—H1120.3H6A—C6—H6B114.7
C6—C1—H1120.3C3—C7—H7A109.5
C5—C1—H1120.3C3—C7—H7B109.5
O1—C2—C1125.52 (15)H7A—C7—H7B109.5
O1—C2—C3123.47 (14)C3—C7—H7C109.5
C1—C2—C3110.94 (13)H7A—C7—H7C109.5
C7—C3—C2109.53 (13)H7B—C7—H7C109.5
C7—C3—C8109.33 (15)C3—C8—H8A109.5
C2—C3—C8108.62 (13)C3—C8—H8B109.5
C7—C3—C4115.62 (13)H8A—C8—H8B109.5
C2—C3—C4103.93 (11)C3—C8—H8C109.5
C8—C3—C4109.53 (14)H8A—C8—H8C109.5
O2—C4—C5106.44 (12)H8B—C8—H8C109.5
O2—C4—C3113.84 (11)S1—C9—H9A109.5
C5—C4—C3108.08 (12)S1—C9—H9B109.5
O2—C4—H4109.5H9A—C9—H9B109.5
C5—C4—H4109.5S1—C9—H9C109.5
C3—C4—H4109.5H9A—C9—H9C109.5
C6—C5—C4116.56 (15)H9B—C9—H9C109.5
C6—C5—C160.38 (11)C4—O2—S1120.23 (9)
C4—C5—C1108.34 (13)O3—S1—O4119.56 (10)
C6—C5—H5119.1O3—S1—O2110.12 (7)
C4—C5—H5119.1O4—S1—O2103.74 (8)
C1—C5—H5119.1O3—S1—C9108.61 (9)
C5—C6—C161.56 (12)O4—S1—C9108.62 (9)
C5—C6—H6A117.6O2—S1—C9105.24 (8)
C6—C1—C2—O1127.22 (19)C8—C3—C4—C5128.36 (15)
C5—C1—C2—O1−170.65 (18)O2—C4—C5—C6−66.42 (17)
C6—C1—C2—C3−55.74 (19)C3—C4—C5—C656.24 (18)
C5—C1—C2—C36.39 (18)O2—C4—C5—C1−131.81 (14)
O1—C2—C3—C7−70.5 (2)C3—C4—C5—C1−9.15 (18)
C1—C2—C3—C7112.43 (15)C2—C1—C5—C6−108.87 (16)
O1—C2—C3—C848.9 (2)C2—C1—C5—C41.83 (19)
C1—C2—C3—C8−128.22 (16)C6—C1—C5—C4110.70 (16)
O1—C2—C3—C4165.44 (17)C4—C5—C6—C1−96.92 (16)
C1—C2—C3—C4−11.67 (17)C2—C1—C6—C595.46 (16)
C7—C3—C4—O210.41 (18)C5—C4—O2—S1−146.30 (11)
C2—C3—C4—O2130.47 (12)C3—C4—O2—S194.74 (13)
C8—C3—C4—O2−113.62 (15)C4—O2—S1—O3−42.98 (13)
C7—C3—C4—C5−107.61 (15)C4—O2—S1—O4−172.07 (11)
C2—C3—C4—C512.45 (16)C4—O2—S1—C973.90 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4···O4i0.982.483.302 (4)141
C9—H9B···O2ii0.962.543.485 (2)169

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2550).

References

  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Dunitz, J. (1979). X-ray Analysis and the Structure of Organic Molecules, p. 429, Ithaca: Cornell University Press.
  • Krief, A. (1994). Stereocontrolled Organic Synthesis: A Chemistry for the 21th Century Monograph, edited by B. M. Trost, pp. 337–397. London: Blackwell Scientific.
  • Krief, A., Lorvelec, G. & Jeanmart, S. (2000). Tetrahedron Lett.41, 3871–3874.
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography