PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o800–o801.
Published online 2010 March 13. doi:  10.1107/S1600536810005982
PMCID: PMC2983903

(E)-3-(Anthracen-9-yl)-1-(furan-2-yl)prop-2-en-1-one1

Abstract

In the mol­ecule of the title heteroaryl chalcone derivative, C21H14O2, the almost planar prop-2-en-1-one unit [r.m.s. deviation = 0.0087 (1) Å] forms dihedral angles of 5.81 (7) and 49.85 (6)°, respectively, with the furan ring and anthracene ring system. In the crystal structure, the mol­ecules are linked into a two-dimensional network parallel to (100) by C—H(...)O hydrogen bonds and π(...)π inter­actions involving the furan rings [centroid–centroid distance = 3.7205 (6) Å].

Related literature

For background and applications of chalcones, see: Gaber et al. (2008 [triangle]); Niu et al. (2006 [triangle]); Xu et al. (2005 [triangle]). For related structures, see: Chantrapromma et al. (2009 [triangle], 2010 [triangle]); Fun et al. (2009 [triangle]); Suwunwong et al. (2009 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o800-scheme1.jpg

Experimental

Crystal data

  • C21H14O2
  • M r = 298.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o800-efi1.jpg
  • a = 21.5743 (4) Å
  • b = 5.4571 (1) Å
  • c = 12.8394 (2) Å
  • β = 104.099 (1)°
  • V = 1466.09 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 100 K
  • 0.55 × 0.25 × 0.07 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.955, T max = 0.994
  • 19468 measured reflections
  • 4251 independent reflections
  • 3549 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.118
  • S = 1.03
  • 4251 reflections
  • 264 parameters
  • All H-atom parameters refined
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810005982/ci5032sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005982/ci5032Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Thailand Research Fund (TRF) for research grant (RSA 5280033) and Prince of Songkla University for financial support. They also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Chalcones have been studied for their wide range of applications including laser activity (Gaber et al., 2008) and fluorescence properties (Niu et al., 2006; Xu et al., 2005). We have previously reported crystal structures of several chalcone derivatives containing the anthracene moiety which exist in E configuration (Suwunwong et al., 2009) or Z configuration (Chantrapromma et al., 2009, 2010; Fun et al., 2009). The title compound was synthesized on account of its fluorescence properties. The crystal structure determination was undertaken to elucidate its conformation and to study the structure and fluorescence activity relationship.

The molecule of the title chalcone derivative (Fig. 1) exists in an E configuration with respect to the C6═C7 ethenyl bond, with a C5—C6—C7—C8 torsion angle of 178.00 (9)°. The anthracene ring system (C8–C21) is essentially planar (r.m.s. deviation = 0.0258 (1) Å). The prop-2-en-1-one unit (C5–C7/O1) is also planar (r.m.s. deviation = 0.0087 (1) Å; O1—C5—C6—C7 = 2.92 (15)°) and it forms dihedral angles of 5.81 (7) and 49.85 (6)°, respectively, with the furan ring and anthracene ring system. The interplanar angle between the furan ring and anthracene ring system is 48.53 (5)°. The bond distances show normal values (Allen et al., 1987) and are comparable with those in closely related structures (Chantrapromma, Horkaew et al., 2009; Chantrapromma, Suwunwong et al., 2010; Fun et al., 2009; Suwunwong et al., 2009).

In the crystal structure, the molecules are linked into a two-dimensional network parallel to the (100) by C—H···O hydrogen bonds (Fig. 2 and Table 1) and π···π interactions between the furan rings at (x, y, z) and (-x, 1-y, -z) [centroid···centroid distance = 3.7205 (6) Å].

Experimental

The title compound was synthesized by the condensation of anthracene-9-carbaldehyde (0.41 g, 2 mmol) with 2-furylmethylketone (0.22 g, 2 mmol) in ethanol (30 ml) in the presence of 30 % aqueous NaOH (5 ml) at room temperature. The reaction mixture was stirred at 278 K for 3 h and then a yellow solid appeared was collected by filtration, washed with acetone and dried in air. Yellow plate-shaped single crystals of the title compound suitable for X-ray structure determination were recrystalized from acetone-ethanol (1:1 v/v) by slow evaporation of the solvent at room temperature after several days (m.p. 423-424 K).

Refinement

All H atoms were located in a difference map and refined isotropically [C–H = 0.941 (15)–1.009 (14) Å].

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
The crystal packing of the title compound viewed along the b axis. C—H···O hydrogen bonds are shown as dashed lines.

Crystal data

C21H14O2F(000) = 624
Mr = 298.32Dx = 1.352 Mg m3
Monoclinic, P21/cMelting point = 423–424 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 21.5743 (4) ÅCell parameters from 4251 reflections
b = 5.4571 (1) Åθ = 2.9–30.0°
c = 12.8394 (2) ŵ = 0.09 mm1
β = 104.099 (1)°T = 100 K
V = 1466.09 (4) Å3Plate, yellow
Z = 40.55 × 0.25 × 0.07 mm

Data collection

Bruker APEXII CCD area-detector diffractometer4251 independent reflections
Radiation source: sealed tube3549 reflections with I > 2σ(I)
graphiteRint = 0.029
[var phi] and ω scansθmax = 30.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −26→30
Tmin = 0.955, Tmax = 0.994k = −7→7
19468 measured reflectionsl = −17→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118All H-atom parameters refined
S = 1.03w = 1/[σ2(Fo2) + (0.0624P)2 + 0.4737P] where P = (Fo2 + 2Fc2)/3
4251 reflections(Δ/σ)max = 0.001
264 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.13071 (4)0.32065 (14)0.15881 (6)0.02003 (17)
O20.00592 (3)0.46137 (14)0.12589 (6)0.01846 (17)
C1−0.04942 (5)0.5903 (2)0.11274 (9)0.0201 (2)
H1−0.0880 (7)0.489 (3)0.1018 (12)0.030 (4)*
C2−0.03863 (5)0.8346 (2)0.11454 (9)0.0208 (2)
H2−0.0701 (8)0.964 (3)0.1084 (13)0.034 (4)*
C30.02854 (5)0.8641 (2)0.12983 (8)0.0177 (2)
H30.0517 (7)1.019 (3)0.1342 (11)0.027 (4)*
C40.05367 (5)0.63332 (19)0.13651 (8)0.0152 (2)
C50.11877 (5)0.54141 (19)0.15040 (8)0.0150 (2)
C60.16862 (5)0.72918 (19)0.15159 (8)0.0163 (2)
C70.22914 (5)0.66214 (19)0.15739 (8)0.0159 (2)
C80.28183 (5)0.83333 (19)0.15569 (8)0.01475 (19)
C90.34004 (5)0.80973 (19)0.23544 (8)0.0153 (2)
C100.34956 (5)0.6249 (2)0.31680 (8)0.0183 (2)
C110.40571 (5)0.6100 (2)0.39433 (9)0.0214 (2)
C120.45582 (5)0.7804 (2)0.39679 (9)0.0231 (2)
C130.44862 (5)0.9614 (2)0.32146 (9)0.0214 (2)
C140.39083 (5)0.9814 (2)0.23836 (8)0.0166 (2)
C150.38256 (5)1.1693 (2)0.16251 (8)0.0181 (2)
C160.32655 (5)1.19033 (19)0.08122 (8)0.0164 (2)
C170.31916 (5)1.3816 (2)0.00291 (9)0.0201 (2)
C180.26502 (6)1.3994 (2)−0.07801 (9)0.0218 (2)
C190.21559 (5)1.2226 (2)−0.08673 (8)0.0209 (2)
C200.22049 (5)1.0396 (2)−0.01267 (8)0.0183 (2)
C210.27525 (5)1.01872 (19)0.07639 (8)0.0154 (2)
H60.1563 (7)0.895 (3)0.1471 (11)0.021 (3)*
H70.2399 (6)0.482 (3)0.1653 (11)0.019 (3)*
H100.3158 (7)0.507 (3)0.3176 (11)0.024 (4)*
H110.4105 (8)0.479 (3)0.4498 (13)0.035 (4)*
H120.4960 (7)0.766 (3)0.4544 (13)0.033 (4)*
H130.4831 (8)1.086 (3)0.3216 (13)0.032 (4)*
H150.4171 (7)1.291 (3)0.1670 (11)0.024 (4)*
H170.3534 (7)1.501 (3)0.0097 (12)0.027 (4)*
H180.2611 (8)1.533 (3)−0.1306 (13)0.036 (4)*
H190.1780 (7)1.232 (3)−0.1469 (11)0.025 (4)*
H200.1864 (7)0.916 (3)−0.0210 (11)0.025 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0184 (4)0.0134 (4)0.0265 (4)−0.0007 (3)0.0020 (3)0.0008 (3)
O20.0144 (3)0.0166 (4)0.0236 (4)−0.0032 (3)0.0031 (3)0.0005 (3)
C10.0134 (5)0.0248 (5)0.0216 (5)−0.0011 (4)0.0031 (4)0.0001 (4)
C20.0154 (5)0.0222 (5)0.0244 (5)0.0021 (4)0.0042 (4)0.0002 (4)
C30.0165 (5)0.0165 (5)0.0196 (5)−0.0007 (4)0.0034 (4)−0.0002 (4)
C40.0142 (4)0.0148 (5)0.0161 (4)−0.0026 (4)0.0027 (3)0.0000 (3)
C50.0147 (4)0.0143 (5)0.0149 (4)−0.0017 (3)0.0016 (3)−0.0006 (3)
C60.0161 (5)0.0125 (4)0.0199 (4)−0.0013 (4)0.0038 (4)−0.0004 (4)
C70.0163 (5)0.0139 (5)0.0170 (4)−0.0011 (4)0.0030 (3)−0.0004 (3)
C80.0136 (4)0.0137 (4)0.0175 (4)−0.0003 (3)0.0047 (3)−0.0019 (3)
C90.0140 (4)0.0155 (5)0.0173 (4)0.0008 (4)0.0051 (3)−0.0012 (4)
C100.0162 (5)0.0180 (5)0.0212 (5)0.0012 (4)0.0054 (4)0.0007 (4)
C110.0190 (5)0.0232 (5)0.0219 (5)0.0047 (4)0.0049 (4)0.0032 (4)
C120.0156 (5)0.0286 (6)0.0232 (5)0.0024 (4)0.0011 (4)0.0001 (4)
C130.0139 (5)0.0248 (6)0.0245 (5)−0.0009 (4)0.0027 (4)−0.0015 (4)
C140.0135 (4)0.0177 (5)0.0192 (4)−0.0002 (4)0.0050 (4)−0.0026 (4)
C150.0157 (5)0.0184 (5)0.0213 (5)−0.0025 (4)0.0067 (4)−0.0012 (4)
C160.0167 (5)0.0153 (5)0.0190 (4)−0.0003 (4)0.0075 (4)−0.0014 (4)
C170.0217 (5)0.0176 (5)0.0234 (5)−0.0010 (4)0.0105 (4)0.0013 (4)
C180.0259 (6)0.0213 (5)0.0207 (5)0.0027 (4)0.0106 (4)0.0039 (4)
C190.0204 (5)0.0243 (6)0.0175 (5)0.0024 (4)0.0038 (4)0.0011 (4)
C200.0170 (5)0.0193 (5)0.0184 (4)−0.0003 (4)0.0037 (4)−0.0003 (4)
C210.0150 (4)0.0149 (5)0.0168 (4)0.0006 (4)0.0049 (3)−0.0011 (4)

Geometric parameters (Å, °)

O1—C51.2312 (13)C10—H100.973 (15)
O2—C11.3606 (13)C11—C121.4209 (17)
O2—C41.3754 (12)C11—H110.997 (17)
C1—C21.3526 (16)C12—C131.3642 (17)
C1—H10.981 (16)C12—H120.996 (16)
C2—C31.4235 (15)C13—C141.4342 (14)
C2—H20.968 (17)C13—H131.007 (16)
C3—C41.3654 (14)C14—C151.3950 (15)
C3—H30.974 (15)C15—C161.3959 (14)
C4—C51.4609 (14)C15—H150.988 (15)
C5—C61.4827 (14)C16—C171.4310 (15)
C6—C71.3406 (14)C16—C211.4396 (14)
C6—H60.941 (15)C17—C181.3645 (16)
C7—C81.4757 (14)C17—H170.972 (15)
C7—H71.009 (14)C18—C191.4225 (17)
C8—C211.4176 (14)C18—H180.984 (17)
C8—C91.4196 (14)C19—C201.3653 (15)
C9—C101.4303 (14)C19—H190.975 (14)
C9—C141.4353 (14)C20—C211.4346 (14)
C10—C111.3701 (15)C20—H200.984 (15)
C1—O2—C4105.84 (8)C10—C11—H11118.7 (9)
C2—C1—O2111.43 (10)C12—C11—H11120.6 (9)
C2—C1—H1134.0 (9)C13—C12—C11120.23 (10)
O2—C1—H1114.6 (9)C13—C12—H12120.8 (9)
C1—C2—C3106.20 (10)C11—C12—H12119.0 (9)
C1—C2—H2127.0 (10)C12—C13—C14120.72 (10)
C3—C2—H2126.8 (10)C12—C13—H13122.1 (9)
C4—C3—C2106.24 (9)C14—C13—H13117.2 (9)
C4—C3—H3127.2 (9)C15—C14—C13121.04 (10)
C2—C3—H3126.6 (9)C15—C14—C9119.63 (9)
C3—C4—O2110.29 (9)C13—C14—C9119.30 (10)
C3—C4—C5132.80 (9)C14—C15—C16121.51 (10)
O2—C4—C5116.90 (9)C14—C15—H15119.0 (8)
O1—C5—C4121.40 (9)C16—C15—H15119.5 (8)
O1—C5—C6122.66 (9)C15—C16—C17120.89 (10)
C4—C5—C6115.93 (9)C15—C16—C21119.67 (9)
C7—C6—C5120.41 (10)C17—C16—C21119.43 (9)
C7—C6—H6121.6 (9)C18—C17—C16121.01 (10)
C5—C6—H6118.0 (9)C18—C17—H17120.7 (9)
C6—C7—C8124.74 (10)C16—C17—H17118.3 (9)
C6—C7—H7117.9 (8)C17—C18—C19119.86 (10)
C8—C7—H7117.4 (8)C17—C18—H18119.4 (9)
C21—C8—C9119.94 (9)C19—C18—H18120.8 (9)
C21—C8—C7121.30 (9)C20—C19—C18120.81 (10)
C9—C8—C7118.76 (9)C20—C19—H19120.0 (9)
C8—C9—C10122.36 (9)C18—C19—H19119.2 (9)
C8—C9—C14119.68 (9)C19—C20—C21121.48 (10)
C10—C9—C14117.92 (9)C19—C20—H20119.7 (8)
C11—C10—C9121.13 (10)C21—C20—H20118.8 (8)
C11—C10—H10118.9 (8)C8—C21—C20123.23 (9)
C9—C10—H10119.9 (8)C8—C21—C16119.46 (9)
C10—C11—C12120.68 (10)C20—C21—C16117.25 (9)
C4—O2—C1—C20.05 (12)C12—C13—C14—C15178.54 (10)
O2—C1—C2—C30.07 (13)C12—C13—C14—C90.46 (16)
C1—C2—C3—C4−0.16 (12)C8—C9—C14—C15−0.25 (15)
C2—C3—C4—O20.20 (11)C10—C9—C14—C15−177.91 (9)
C2—C3—C4—C5179.04 (10)C8—C9—C14—C13177.85 (9)
C1—O2—C4—C3−0.16 (11)C10—C9—C14—C130.20 (15)
C1—O2—C4—C5−179.20 (8)C13—C14—C15—C16179.91 (10)
C3—C4—C5—O1176.89 (11)C9—C14—C15—C16−2.01 (16)
O2—C4—C5—O1−4.33 (14)C14—C15—C16—C17−178.97 (10)
C3—C4—C5—C6−4.22 (16)C14—C15—C16—C211.51 (15)
O2—C4—C5—C6174.56 (8)C15—C16—C17—C18178.56 (10)
O1—C5—C6—C72.92 (15)C21—C16—C17—C18−1.92 (16)
C4—C5—C6—C7−175.95 (9)C16—C17—C18—C19−1.51 (17)
C5—C6—C7—C8178.00 (9)C17—C18—C19—C202.45 (17)
C6—C7—C8—C21−49.44 (15)C18—C19—C20—C210.14 (17)
C6—C7—C8—C9130.63 (11)C9—C8—C21—C20173.77 (9)
C21—C8—C9—C10−179.46 (9)C7—C8—C21—C20−6.16 (15)
C7—C8—C9—C100.48 (15)C9—C8—C21—C16−3.49 (15)
C21—C8—C9—C142.99 (15)C7—C8—C21—C16176.57 (9)
C7—C8—C9—C14−177.07 (9)C19—C20—C21—C8179.21 (10)
C8—C9—C10—C11−178.45 (10)C19—C20—C21—C16−3.47 (15)
C14—C9—C10—C11−0.86 (15)C15—C16—C21—C81.27 (15)
C9—C10—C11—C120.87 (17)C17—C16—C21—C8−178.26 (9)
C10—C11—C12—C13−0.18 (18)C15—C16—C21—C20−176.16 (9)
C11—C12—C13—C14−0.48 (18)C17—C16—C21—C204.31 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.98 (2)2.34 (2)3.2871 (14)165 (1)
C6—H6···O1i0.94 (2)2.40 (2)3.3366 (13)173 (1)
C19—H19···O1ii0.98 (1)2.47 (1)3.3419 (13)148 (1)

Symmetry codes: (i) x, y+1, z; (ii) x, −y+3/2, z−1/2.

Footnotes

1This paper is dedicated to His Majesty King Bhumibol Adulyadej of Thailand (King Rama IX) for his sustainable development of the country.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5032).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chantrapromma, S., Horkaew, J., Suwunwong, T. & Fun, H.-K. (2009). Acta Cryst. E65, o2673–o2674. [PMC free article] [PubMed]
  • Chantrapromma, S., Suwunwong, T., Boonnak, N. & Fun, H.-K. (2010). Acta Cryst. E66, o312–o313. [PMC free article] [PubMed]
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Fun, H.-K., Suwunwong, T., Boonnak, N. & Chantrapromma, S. (2009). Acta Cryst. E65, o2168–o2169. [PMC free article] [PubMed]
  • Gaber, M., El-Daly, S. A., Fayed, T. A. & El-Sayed, Y. S. (2008). Opt. Laser Tech.40, 528–537.
  • Niu, C.-G., Guan, A.-L., Zeng, G.-M., Liu, Y.-G. & Li, Z.-W. (2006). Anal. Chim. Acta, 577, 264–270. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Suwunwong, T., Chantrapromma, S., Karalai, C., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o420–o421. [PMC free article] [PubMed]
  • Xu, Z., Bai, G. & Dong, C. (2005). Spectrochim. Acta Part A, 62, 987–990. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography