PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m456.
Published online 2010 March 27. doi:  10.1107/S1600536810009608
PMCID: PMC2983900

Methoxo[N′-(3-meth­oxy-2-oxidobenzyl­idene)benzohydrazidato]oxidovanadium(V)

Abstract

In the title complex, [V(C15H12N2O4)(CH3O)O], the VV ion exhibits a distorted square-pyramidal coordination geometry; three donor atoms from a hydrazone ligand and one O atom of the deprotonated methanol define the coordination basal plane. The VV ion is displaced by 0.464 (1) Å from the basal plane towards the axial oxide O atom. Intra­molecular O—H(...)N hydrogen bonding occurs. Inter­molecular C—H(...)O hydrogen bonding is also observed in the crystal structure.

Related literature

For general background to hydrazones and their chelation ability, see: Liu & Gao (1998 [triangle]); Ma et al. (1989 [triangle]); Sur et al. (1993 [triangle]); Sun et al. (2005 [triangle]). For related structures, see: Chen et al. (2004 [triangle]); Liu et al. (2006 [triangle]); Ghosh et al. (2007 [triangle]); Seena et al. (2008 [triangle]). For the synthesis, see: Gao et al. (1998 [triangle]); Chen (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m456-scheme1.jpg

Experimental

Crystal data

  • [V(C15H12N2O4)(CH3O)O]
  • M r = 382.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m456-efi1.jpg
  • a = 16.194 (3) Å
  • b = 6.6746 (13) Å
  • c = 15.359 (3) Å
  • β = 96.89 (3)°
  • V = 1648.1 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.64 mm−1
  • T = 293 K
  • 0.39 × 0.22 × 0.15 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (TEXRAY; Molecular Structure Corporation, 1999 [triangle]) T min = 0.845, T max = 0.909
  • 14918 measured reflections
  • 3686 independent reflections
  • 2776 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.118
  • S = 1.08
  • 3686 reflections
  • 228 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: TEXRAY (Molecular Structure Corporation, 1999 [triangle]); cell refinement: TEXRAY; data reduction: TEXSAN (Molecular Structure Corporation, 1999 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEX (McArdle, 1995 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810009608/xu2731sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810009608/xu2731Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Undergraduate Students’ Extracurricular Technology Project of Fujian Normal University, China (grant No. BKL2009–045).

supplementary crystallographic information

Comment

Hydrazones are of interest owing to their capacity for chelating to transition (Sur et al., 1993; Sun, et al., 2005), lanthanide (Ma et al., 1989) and main group (Liu & Gao 1998) metals.

The VV ion exists in a distorted square-pyramidal coordination geometry. Three donor atoms (O1, O3 and N1) of the hydrozone ligand and O6 atom from the methanol group define the coordination basal plane, with a maximum mean plane deviation of 0.0215 (9) Å. The V atom is displaced towards the axial oxo O atom by 0.464 (1)Å from the basal plane. Bond distances (Table 1) and bond angles around V1 atom are compared with those in reported oxovanadium complexes (Chen et al., 2004; Seena et al., 2008; Liu et al.,2006; Ghosh et al., 2007). In the crystal structure there are the intramolecular O—H···N hydrogen bonding and intermolecular C—H···O hydrogen bonding (Table 2).

Experimental

VO(acac)2 (acac = acetylacetonate) was synthesized according to the reported method (Gao et al., 1998). The hydrazone ligand (L) was prepared by following a similar procedure reported by Chen (2008).

The title compound was prepared by reacting H2L (0.1 mmol) with VO(acac)2 (0.1 mmol) in methnol/water solution (10 ml) with stirring. The solution was filtered and allowed to stand at room temperature for one week, dark-red crystals of complex (I) were obtained.

Refinement

All H atoms were placed in idealized positions and treated as riding with O—H = 0.82 Å, C—H = 0.93-0.96 Å; Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C,O).

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms. A dashed line indicates the intramoleculat hydrogen bonding.

Crystal data

[V(C15H12N2O4)(CH3O)O]F(000) = 784
Mr = 382.24Dx = 1.541 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2776 reflections
a = 16.194 (3) Åθ = 3.1–27.5°
b = 6.6746 (13) ŵ = 0.64 mm1
c = 15.359 (3) ÅT = 293 K
β = 96.89 (3)°Prism, dark-red
V = 1648.1 (6) Å30.39 × 0.22 × 0.15 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer3686 independent reflections
Radiation source: fine-focus sealed tube2776 reflections with I > 2σ(I)
graphiteRint = 0.051
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (TEXRAY; Molecular Structure Corporation, 1999)h = −21→21
Tmin = 0.845, Tmax = 0.909k = −8→8
14918 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.062P)2 + 0.2985P] where P = (Fo2 + 2Fc2)/3
3686 reflections(Δ/σ)max = 0.001
228 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.39 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
V10.16311 (2)0.04276 (6)0.66648 (3)0.04096 (14)
O10.16555 (9)0.2270 (2)0.57877 (11)0.0533 (4)
O20.09673 (11)0.5226 (3)0.48044 (13)0.0624 (5)
O30.21107 (9)−0.1967 (2)0.72412 (10)0.0464 (4)
O40.46575 (11)−0.2270 (3)0.81503 (15)0.0860 (7)
H4B0.4400−0.13790.78670.129*
O50.13675 (10)0.1611 (3)0.74736 (12)0.0599 (5)
O60.07767 (10)−0.0955 (3)0.62167 (11)0.0561 (4)
N10.29210 (10)0.0886 (3)0.68123 (11)0.0377 (4)
N20.33889 (10)−0.0525 (3)0.73138 (12)0.0411 (4)
C10.21307 (13)0.3854 (3)0.56461 (14)0.0432 (5)
C20.29647 (12)0.3942 (3)0.59948 (13)0.0390 (5)
C30.34579 (14)0.5570 (3)0.57913 (16)0.0487 (6)
H3A0.40170.56170.60150.058*
C40.31173 (16)0.7083 (4)0.52658 (16)0.0562 (6)
H4A0.34450.81550.51290.067*
C50.22816 (16)0.7015 (4)0.49361 (16)0.0554 (6)
H5A0.20520.80630.45880.066*
C60.17849 (14)0.5428 (4)0.51131 (15)0.0488 (5)
C70.05967 (18)0.6762 (5)0.4246 (2)0.0739 (8)
H7A0.00160.64780.40950.111*
H7B0.08650.68180.37220.111*
H7C0.06590.80270.45440.111*
C80.33318 (12)0.2369 (3)0.65380 (14)0.0406 (5)
H8A0.39030.24140.67050.049*
C90.29058 (12)−0.1970 (3)0.75157 (14)0.0397 (5)
C100.32708 (14)−0.3646 (3)0.80484 (14)0.0431 (5)
C110.41233 (15)−0.3729 (4)0.83309 (17)0.0577 (6)
C120.44452 (19)−0.5360 (5)0.8821 (2)0.0744 (9)
H12A0.5014−0.54320.90010.089*
C130.3936 (2)−0.6854 (5)0.90395 (19)0.0723 (8)
H13A0.4162−0.79320.93700.087*
C140.3096 (2)−0.6792 (4)0.87791 (17)0.0642 (7)
H14A0.2753−0.78150.89370.077*
C150.27640 (16)−0.5201 (4)0.82817 (16)0.0508 (6)
H15A0.2195−0.51640.80990.061*
C160.00782 (18)−0.1796 (5)0.6540 (2)0.0879 (10)
H16A−0.0371−0.18970.60730.132*
H16B−0.0088−0.09580.69970.132*
H16C0.0216−0.31060.67710.132*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
V10.02696 (19)0.0439 (2)0.0521 (2)−0.00458 (14)0.00533 (14)0.00005 (17)
O10.0359 (8)0.0547 (10)0.0670 (10)−0.0086 (7)−0.0028 (7)0.0155 (9)
O20.0453 (9)0.0705 (11)0.0685 (11)−0.0006 (8)−0.0056 (8)0.0233 (10)
O30.0364 (8)0.0468 (9)0.0555 (9)−0.0077 (6)0.0038 (6)0.0039 (8)
O40.0380 (9)0.0995 (15)0.1183 (17)0.0049 (10)0.0011 (10)0.0564 (14)
O50.0471 (9)0.0652 (11)0.0693 (11)0.0029 (8)0.0147 (8)−0.0103 (9)
O60.0390 (8)0.0612 (10)0.0664 (11)−0.0148 (7)−0.0006 (7)0.0052 (9)
N10.0290 (8)0.0415 (9)0.0428 (9)−0.0003 (7)0.0047 (7)−0.0014 (8)
N20.0316 (8)0.0416 (10)0.0498 (10)0.0015 (7)0.0034 (7)0.0016 (8)
C10.0384 (11)0.0482 (12)0.0440 (12)−0.0035 (9)0.0093 (9)0.0036 (10)
C20.0353 (10)0.0434 (11)0.0395 (11)−0.0033 (8)0.0093 (8)−0.0034 (10)
C30.0429 (12)0.0551 (14)0.0493 (13)−0.0115 (10)0.0105 (10)0.0000 (11)
C40.0586 (15)0.0576 (15)0.0542 (14)−0.0149 (12)0.0146 (11)0.0099 (13)
C50.0616 (15)0.0556 (15)0.0497 (13)−0.0044 (12)0.0096 (11)0.0153 (12)
C60.0451 (12)0.0575 (14)0.0440 (12)0.0000 (10)0.0063 (10)0.0059 (11)
C70.0635 (17)0.083 (2)0.0713 (18)0.0100 (15)−0.0089 (14)0.0247 (17)
C80.0290 (9)0.0464 (12)0.0469 (12)−0.0031 (8)0.0069 (8)−0.0045 (10)
C90.0355 (10)0.0433 (11)0.0407 (11)0.0005 (9)0.0067 (8)−0.0054 (10)
C100.0500 (12)0.0418 (12)0.0392 (11)0.0033 (9)0.0115 (9)−0.0041 (10)
C110.0471 (13)0.0680 (16)0.0588 (15)0.0118 (12)0.0101 (11)0.0116 (14)
C120.0619 (17)0.085 (2)0.077 (2)0.0244 (16)0.0101 (15)0.0246 (17)
C130.095 (2)0.0673 (19)0.0561 (16)0.0218 (17)0.0154 (15)0.0142 (15)
C140.098 (2)0.0459 (14)0.0519 (15)−0.0048 (14)0.0225 (14)0.0012 (13)
C150.0631 (15)0.0473 (13)0.0436 (12)−0.0025 (11)0.0127 (11)−0.0072 (11)
C160.0597 (17)0.101 (2)0.103 (2)−0.0432 (17)0.0113 (16)0.004 (2)

Geometric parameters (Å, °)

V1—O11.8277 (17)C4—H4A0.9300
V1—O31.9436 (16)C5—C61.377 (3)
V1—O51.5736 (18)C5—H5A0.9300
V1—O61.7351 (16)C7—H7A0.9600
V1—N12.0963 (17)C7—H7B0.9600
O1—C11.341 (3)C7—H7C0.9600
O2—C61.358 (3)C8—H8A0.9300
O2—C71.423 (3)C9—C101.467 (3)
O3—C91.306 (2)C10—C151.397 (3)
O4—C111.353 (3)C10—C111.398 (3)
O4—H4B0.8200C11—C121.389 (4)
O6—C161.406 (3)C12—C131.361 (4)
N1—C81.292 (3)C12—H12A0.9300
N1—N21.384 (2)C13—C141.372 (4)
N2—C91.303 (3)C13—H13A0.9300
C1—C21.393 (3)C14—C151.379 (4)
C1—C61.406 (3)C14—H14A0.9300
C2—C31.405 (3)C15—H15A0.9300
C2—C81.426 (3)C16—H16A0.9600
C3—C41.367 (3)C16—H16B0.9600
C3—H3A0.9300C16—H16C0.9600
C4—C51.388 (3)
O5—V1—O6107.53 (9)O2—C7—H7A109.5
O5—V1—O1106.03 (9)O2—C7—H7B109.5
O6—V1—O198.75 (8)H7A—C7—H7B109.5
O5—V1—O3100.64 (8)O2—C7—H7C109.5
O6—V1—O389.96 (7)H7A—C7—H7C109.5
O1—V1—O3147.80 (7)H7B—C7—H7C109.5
O5—V1—N1101.68 (8)N1—C8—C2124.10 (18)
O6—V1—N1149.00 (8)N1—C8—H8A118.0
O1—V1—N182.66 (7)C2—C8—H8A118.0
O3—V1—N174.46 (6)N2—C9—O3121.3 (2)
C1—O1—V1135.54 (14)N2—C9—C10118.93 (19)
C6—O2—C7117.5 (2)O3—C9—C10119.78 (19)
C9—O3—V1118.22 (14)C15—C10—C11118.7 (2)
C11—O4—H4B109.5C15—C10—C9120.0 (2)
C16—O6—V1135.18 (19)C11—C10—C9121.3 (2)
C8—N1—N2115.74 (16)O4—C11—C12117.9 (2)
C8—N1—V1128.47 (14)O4—C11—C10122.7 (2)
N2—N1—V1115.67 (12)C12—C11—C10119.5 (3)
C9—N2—N1109.38 (16)C13—C12—C11120.6 (3)
O1—C1—C2121.3 (2)C13—C12—H12A119.7
O1—C1—C6119.17 (19)C11—C12—H12A119.7
C2—C1—C6119.5 (2)C12—C13—C14121.0 (3)
C1—C2—C3119.8 (2)C12—C13—H13A119.5
C1—C2—C8120.72 (19)C14—C13—H13A119.5
C3—C2—C8119.42 (19)C13—C14—C15119.4 (3)
C4—C3—C2120.2 (2)C13—C14—H14A120.3
C4—C3—H3A119.9C15—C14—H14A120.3
C2—C3—H3A119.9C14—C15—C10120.8 (3)
C3—C4—C5119.9 (2)C14—C15—H15A119.6
C3—C4—H4A120.1C10—C15—H15A119.6
C5—C4—H4A120.1O6—C16—H16A109.5
C6—C5—C4121.4 (2)O6—C16—H16B109.5
C6—C5—H5A119.3H16A—C16—H16B109.5
C4—C5—H5A119.3O6—C16—H16C109.5
O2—C6—C5125.1 (2)H16A—C16—H16C109.5
O2—C6—C1115.6 (2)H16B—C16—H16C109.5
C5—C6—C1119.2 (2)
O5—V1—O1—C168.2 (2)C7—O2—C6—C50.8 (4)
O6—V1—O1—C1179.4 (2)C7—O2—C6—C1−178.6 (2)
O3—V1—O1—C1−76.5 (3)C4—C5—C6—O2−178.7 (2)
N1—V1—O1—C1−31.9 (2)C4—C5—C6—C10.6 (4)
O5—V1—O3—C9−90.59 (16)O1—C1—C6—O22.2 (3)
O6—V1—O3—C9161.58 (15)C2—C1—C6—O2−179.7 (2)
O1—V1—O3—C955.0 (2)O1—C1—C6—C5−177.2 (2)
N1—V1—O3—C98.72 (14)C2—C1—C6—C50.9 (3)
O5—V1—O6—C16−27.1 (3)N2—N1—C8—C2178.26 (18)
O1—V1—O6—C16−137.1 (3)V1—N1—C8—C2−6.0 (3)
O3—V1—O6—C1674.0 (3)C1—C2—C8—N1−6.8 (3)
N1—V1—O6—C16132.6 (3)C3—C2—C8—N1174.9 (2)
O5—V1—N1—C8−85.9 (2)N1—N2—C9—O31.1 (3)
O6—V1—N1—C8113.8 (2)N1—N2—C9—C10179.94 (17)
O1—V1—N1—C818.99 (19)V1—O3—C9—N2−8.7 (3)
O3—V1—N1—C8176.1 (2)V1—O3—C9—C10172.45 (14)
O5—V1—N1—N289.78 (15)N2—C9—C10—C15179.3 (2)
O6—V1—N1—N2−70.5 (2)O3—C9—C10—C15−1.9 (3)
O1—V1—N1—N2−165.29 (15)N2—C9—C10—C11−0.8 (3)
O3—V1—N1—N2−8.15 (13)O3—C9—C10—C11178.0 (2)
C8—N1—N2—C9−177.45 (19)C15—C10—C11—O4−178.7 (3)
V1—N1—N2—C96.3 (2)C9—C10—C11—O41.5 (4)
V1—O1—C1—C229.7 (3)C15—C10—C11—C121.0 (4)
V1—O1—C1—C6−152.29 (18)C9—C10—C11—C12−178.9 (2)
O1—C1—C2—C3176.2 (2)O4—C11—C12—C13178.6 (3)
C6—C1—C2—C3−1.8 (3)C10—C11—C12—C13−1.1 (5)
O1—C1—C2—C8−2.0 (3)C11—C12—C13—C140.3 (5)
C6—C1—C2—C8180.0 (2)C12—C13—C14—C150.6 (4)
C1—C2—C3—C41.2 (3)C13—C14—C15—C10−0.7 (4)
C8—C2—C3—C4179.5 (2)C11—C10—C15—C14−0.1 (3)
C2—C3—C4—C50.3 (4)C9—C10—C15—C14179.7 (2)
C3—C4—C5—C6−1.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4B···N20.821.842.568 (2)147
C8—H8A···O4i0.932.323.243 (3)169

Symmetry codes: (i) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2731).

References

  • Chen, X.-H. (2008). Acta Cryst. E64, m1253. [PMC free article] [PubMed]
  • Chen, L.-J., Yang, M.-X. & Lin, S. (2004). Acta Cryst. E60, m1881–m1882.
  • Gao, S., Weng, Z.-Q. & Liu, S.-X. (1998). Polyhedron, 17, 3595–3606.
  • Ghosh, T., Mondal, B., Ghosh, T., Sutradhar, M., Mukherjee, G. & Drew, M. G. B. (2007). Inorg. Chim. Acta, 360, 1753–1761.
  • Liu, S.-X. & Gao, S. (1998). Polyhedron, 17, 81–84.
  • Liu, J.-H., Wu, X.-Y., Zhang, Q.-Z., He, X., Yang, W.-B. & Lu, C.-Z. (2006). Chin. J. Inorg. Chem.22, 1028–1032.
  • Ma, Y.-X., Ma, Z.-Q., Zhao, G., Ma, Y. & Yang, M. (1989). Polyhedron, 8, 2105–2108.
  • McArdle, P. (1995). J. Appl. Cryst.28, 65.
  • Molecular Structure Corporation (1999). TEXRAY and TEXSAN MSC, The Woodlands, Texas, USA.
  • Seena, E. B., Mathew, N., Kuriakose, M. & Kurup, M. P. R. (2008). Polyhedron, 27, 1455–1462.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, M.-M., Li, W.-P. & Liu, S.-X. (2005). Acta Cryst. E61, m1818–m1820.
  • Sur, H., Roychowdhuri, S. & Seth, S. (1993). Acta Cryst. C49, 870–873.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography