PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o1007–o1008.
Published online 2010 March 31. doi:  10.1107/S1600536810011554
PMCID: PMC2983899

N′-[(E)-4-(Diethyl­amino)benzyl­idene]-4-nitro­benzohydrazide monohydrate

Abstract

In the title compound, C18H20N4O3·H2O, the two aromatic rings are linked through a methyl­idenehydrazide fragment, which is fully extended with C—C—N—N, C—N—N=C and N—N=C—C torsion angles of 179.4 (2), 174.7 (2) and 178.3 (2)°, respectively. The dihedral angle between the two aromatic rings is 7.01 (8)°. In the crystal structure, the water of hydration is involved in extensive hydrogen bonding. Inter­molecular O—H(...)O, N—H(...)O and O—H(...)N hydrogen bonds link the components of the structure into a two-dimensional network and additional stabilization is provided by weak inter­molecular C—H(...)O hydrogen bonds.

Related literature

For the synthesis of related compounds, see: Ahmad et al. (2010 [triangle]). For the coordinating capability of hydrazones, see: Rodríguez-Argüelles et al. (2004 [triangle]). For the biological activity of benzohydrazides, see: Zia-ur-Rehman et al. (2009 [triangle]); Galal et al. (2009 [triangle]); Bordoloi et al. (2009 [triangle]). For closely related structures, see: Fun et al. (2008 [triangle]); Bessy et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1007-scheme1.jpg

Experimental

Crystal data

  • C18H20N4O3·H2O
  • M r = 358.40
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1007-efi1.jpg
  • a = 38.3142 (12) Å
  • b = 7.4563 (3) Å
  • c = 12.6332 (5) Å
  • β = 98.215 (2)°
  • V = 3572.0 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 173 K
  • 0.08 × 0.06 × 0.04 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1997 [triangle]) T min = 0.992, T max = 0.996
  • 5710 measured reflections
  • 4048 independent reflections
  • 3182 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.138
  • S = 1.11
  • 4048 reflections
  • 246 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810011554/bt5231sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011554/bt5231Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HLS is grateful to the Institute of Chemistry, University of the Punjab, for financial support.

supplementary crystallographic information

Comment

The chemistry of hydrazones is being investigated continuously due to their excellent coordinating capability (Rodríguez-Argüelles et al., 2004) and biological activities (Zia-ur-Rehman et al., 2009; Galal et al., 2009; Bordoloi et al., 2009). In continuation of our studies on the synthesis of various heterocyclic compounds (Ahmad et al., 2010), the title compound, (I), has been synthesized and its crystal structure determined by X-ray crystallographic method which is presented in this article.

In the the title compound (Fig. 1) the bond distances and angles agree with the corresponding bond distances and angles reported in closely related compounds (Fun et al., 2008; Bessy et al., 2006). The benzene rings in (I) are linked through a methylidenehydrazide fragment, C6/C7/N2/N3/C8, which is fully extended with torsion angles C6–C7–N2–N3, C7–N2–N3\ C8 and N2–N3═C8–C9 179.4 (2), 174.7 (2) and 178.3 (2)°, respectively. The dihedral angle between the two benzene rings is 7.01 (8)°. In the crystal structure, the water of hydration is extensively involved in hydrogen bonding. Thus, intermolecular O—H···O, N—H···O and O—H···N hydrogen bonds link the components of the structure into a two-dimensional network and additional stabilization is provided by weak intermolecular C—H···O hydrogen bonds; details have been provided in Table. 1. and Fig. 2.

Experimental

A mixture of para nitrobenzohydrazide (0.5 g, 2.76 mmoles), p-(diethylamino)benzaldehyde (0.49 g, 2.76 mmoles), orthophosphoric acid (0.2 ml) and methanol (50.0 ml) was refluxed for a period of 5.5 hours followed by removal of the solvent under vacuum. The contents were cooled and washed with cold methanol followed by crystallization from the same solvent at room temperature by slow evaporation. Yield: 91%. M.p. 491 K.

Refinement

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms bonded to C-atoms were included at geometrically idealized positions and refined in riding-model approximation with C—H = 0.95, 0.98 and 0.99 Å, for aryl, methyl and methylene H-atoms, respectively; the coordinates of the H-atoms bonded to N2 and O4 were allowed to refine. The Uiso(H) were allowed at 1.5Ueq(methyl-C and water-O) and 1.2Ueq(the rest of the parent atoms). The final difference map was essentially featurless.

Figures

Fig. 1.
The title compound with the displacement ellipsoids plotted at 50% probability level (Farrugia, 1997). Symmetry code * = x, 1-y, z+1/2.
Fig. 2.
The unit cell packing of the title compound; H-bonds have been plotted with dashed lines and H-atoms not involved in H-bonds have been excluded for clarity.

Crystal data

C18H20N4O3·H2OF(000) = 1520
Mr = 358.40Dx = 1.333 Mg m3
Monoclinic, C2/cMelting point: 491 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 38.3142 (12) ÅCell parameters from 3855 reflections
b = 7.4563 (3) Åθ = 1.0–27.5°
c = 12.6332 (5) ŵ = 0.10 mm1
β = 98.215 (2)°T = 173 K
V = 3572.0 (2) Å3Prism, orange
Z = 80.08 × 0.06 × 0.04 mm

Data collection

Nonius KappaCCD diffractometer4048 independent reflections
Radiation source: fine-focus sealed tube3182 reflections with I > 2σ(I)
graphiteRint = 0.021
ω and [var phi] scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (SORTAV; Blessing, 1997)h = −49→49
Tmin = 0.992, Tmax = 0.996k = −6→9
5710 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: difference Fourier map
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.11w = 1/[σ2(Fo2) + (0.0299P)2 + 6.8806P] where P = (Fo2 + 2Fc2)/3
4048 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O40.24370 (5)0.6548 (3)0.29158 (14)0.0491 (5)
H4A0.2524 (8)0.625 (5)0.236 (3)0.074*
H4B0.2376 (9)0.762 (5)0.289 (3)0.074*
O10.44265 (4)0.7990 (3)0.48843 (14)0.0504 (5)
O20.42219 (4)0.7098 (3)0.32907 (14)0.0529 (5)
O30.29243 (4)0.4979 (3)0.66984 (12)0.0470 (5)
N10.41920 (5)0.7349 (3)0.42338 (15)0.0382 (4)
N20.26157 (4)0.5178 (2)0.50392 (14)0.0309 (4)
H2N0.2601 (6)0.555 (3)0.4374 (19)0.037*
N30.23060 (4)0.4687 (2)0.54236 (14)0.0329 (4)
N40.06636 (4)0.2626 (3)0.54414 (14)0.0385 (5)
C10.35196 (5)0.6469 (3)0.60129 (16)0.0360 (5)
H10.34970.65460.67500.043*
C20.38313 (5)0.6981 (3)0.56723 (17)0.0376 (5)
H20.40230.74230.61650.045*
C30.38577 (5)0.6834 (3)0.45998 (16)0.0317 (4)
C40.35855 (5)0.6218 (3)0.38607 (16)0.0355 (5)
H40.36110.61340.31250.043*
C50.32730 (5)0.5720 (3)0.42139 (16)0.0331 (5)
H50.30810.52940.37160.040*
C60.32385 (5)0.5841 (3)0.52888 (15)0.0286 (4)
C70.29128 (5)0.5290 (3)0.57364 (16)0.0308 (4)
C80.20420 (5)0.4474 (3)0.46932 (17)0.0330 (4)
H80.20750.46270.39680.040*
C90.16922 (5)0.4008 (3)0.49284 (16)0.0313 (4)
C100.16034 (5)0.3932 (3)0.59596 (16)0.0324 (5)
H100.17780.41890.65530.039*
C110.12662 (5)0.3491 (3)0.61358 (16)0.0327 (5)
H110.12130.34540.68470.039*
C120.09998 (5)0.3094 (3)0.52795 (16)0.0326 (5)
C130.10887 (5)0.3192 (3)0.42407 (17)0.0371 (5)
H130.09150.29450.36440.044*
C140.14265 (6)0.3645 (3)0.40804 (17)0.0373 (5)
H140.14800.37110.33700.045*
C150.05774 (6)0.2167 (3)0.64950 (17)0.0387 (5)
H15A0.07880.16210.69220.046*
H15B0.03880.12530.64100.046*
C160.04582 (6)0.3745 (4)0.7111 (2)0.0502 (6)
H16A0.03920.33220.77890.075*
H16B0.02550.43210.66860.075*
H16C0.06510.46130.72560.075*
C170.03658 (6)0.2743 (4)0.45771 (18)0.0449 (6)
H17A0.04150.36970.40730.054*
H17B0.01520.30950.48840.054*
C180.02924 (7)0.1007 (4)0.3964 (2)0.0595 (8)
H18A0.04930.07140.35950.089*
H18B0.00800.11440.34380.089*
H18C0.02570.00400.44630.089*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O40.0535 (10)0.0650 (12)0.0311 (8)0.0156 (9)0.0143 (7)0.0043 (9)
O10.0315 (8)0.0661 (12)0.0534 (10)−0.0138 (8)0.0055 (7)0.0024 (9)
O20.0483 (10)0.0704 (13)0.0443 (9)−0.0106 (9)0.0216 (8)0.0001 (9)
O30.0312 (8)0.0813 (13)0.0286 (7)−0.0081 (8)0.0043 (6)0.0116 (8)
N10.0316 (9)0.0399 (11)0.0443 (10)−0.0039 (8)0.0098 (8)0.0046 (9)
N20.0241 (8)0.0398 (10)0.0297 (8)−0.0028 (7)0.0063 (7)0.0027 (8)
N30.0241 (8)0.0379 (10)0.0376 (9)−0.0030 (7)0.0072 (7)0.0018 (8)
N40.0248 (8)0.0575 (13)0.0325 (9)−0.0085 (8)0.0011 (7)0.0024 (9)
C10.0307 (10)0.0519 (14)0.0248 (9)−0.0055 (10)0.0017 (8)0.0008 (9)
C20.0286 (10)0.0512 (14)0.0317 (10)−0.0083 (10)0.0002 (8)−0.0005 (10)
C30.0261 (9)0.0335 (11)0.0359 (10)−0.0018 (8)0.0062 (8)0.0034 (9)
C40.0333 (11)0.0469 (13)0.0270 (10)−0.0019 (9)0.0071 (8)−0.0027 (9)
C50.0282 (10)0.0419 (12)0.0287 (10)−0.0041 (9)0.0023 (8)−0.0033 (9)
C60.0258 (9)0.0313 (10)0.0290 (9)−0.0006 (8)0.0049 (8)0.0010 (8)
C70.0287 (10)0.0354 (11)0.0289 (10)−0.0029 (8)0.0061 (8)0.0009 (8)
C80.0294 (10)0.0361 (11)0.0343 (10)−0.0021 (9)0.0075 (8)0.0009 (9)
C90.0249 (9)0.0347 (11)0.0340 (10)−0.0024 (8)0.0028 (8)0.0010 (9)
C100.0258 (9)0.0377 (11)0.0322 (10)−0.0012 (8)−0.0006 (8)−0.0009 (9)
C110.0263 (10)0.0415 (12)0.0299 (10)−0.0007 (9)0.0027 (8)0.0032 (9)
C120.0257 (9)0.0379 (11)0.0339 (10)−0.0035 (8)0.0028 (8)0.0025 (9)
C130.0291 (10)0.0489 (13)0.0314 (10)−0.0071 (9)−0.0023 (8)0.0022 (10)
C140.0338 (11)0.0466 (13)0.0314 (10)−0.0067 (10)0.0047 (9)−0.0001 (9)
C150.0280 (10)0.0515 (14)0.0363 (11)−0.0080 (10)0.0039 (8)0.0067 (10)
C160.0405 (13)0.0680 (18)0.0436 (13)0.0061 (12)0.0114 (11)0.0064 (13)
C170.0287 (10)0.0637 (16)0.0407 (12)−0.0069 (11)−0.0006 (9)0.0075 (11)
C180.0498 (15)0.080 (2)0.0464 (14)−0.0243 (14)−0.0024 (12)−0.0023 (14)

Geometric parameters (Å, °)

O4—H4A0.85 (3)C8—C91.456 (3)
O4—H4B0.83 (4)C8—H80.9500
O1—N11.225 (2)C9—C101.394 (3)
O2—N11.228 (2)C9—C141.395 (3)
O3—C71.232 (2)C10—C111.382 (3)
N1—C31.473 (3)C10—H100.9500
N2—C71.339 (2)C11—C121.409 (3)
N2—N31.394 (2)C11—H110.9500
N2—H2N0.88 (2)C12—C131.404 (3)
N3—C81.278 (3)C13—C141.380 (3)
N4—C121.378 (3)C13—H130.9500
N4—C151.457 (3)C14—H140.9500
N4—C171.465 (3)C15—C161.517 (4)
C1—C21.380 (3)C15—H15A0.9900
C1—C61.391 (3)C15—H15B0.9900
C1—H10.9500C16—H16A0.9800
C2—C31.377 (3)C16—H16B0.9800
C2—H20.9500C16—H16C0.9800
C3—C41.376 (3)C17—C181.514 (4)
C4—C51.387 (3)C17—H17A0.9900
C4—H40.9500C17—H17B0.9900
C5—C61.386 (3)C18—H18A0.9800
C5—H50.9500C18—H18B0.9800
C6—C71.499 (3)C18—H18C0.9800
H4A—O4—H4B111 (3)C11—C10—H10119.4
O1—N1—O2123.34 (19)C9—C10—H10119.4
O1—N1—C3118.57 (18)C10—C11—C12121.19 (19)
O2—N1—C3118.09 (18)C10—C11—H11119.4
C7—N2—N3118.26 (17)C12—C11—H11119.4
C7—N2—H2N122.7 (15)N4—C12—C13120.59 (18)
N3—N2—H2N118.4 (15)N4—C12—C11121.96 (19)
C8—N3—N2113.98 (17)C13—C12—C11117.45 (18)
C12—N4—C15122.27 (17)C14—C13—C12120.52 (19)
C12—N4—C17121.30 (18)C14—C13—H13119.7
C15—N4—C17116.15 (17)C12—C13—H13119.7
C2—C1—C6120.75 (19)C13—C14—C9122.1 (2)
C2—C1—H1119.6C13—C14—H14118.9
C6—C1—H1119.6C9—C14—H14118.9
C3—C2—C1118.25 (19)N4—C15—C16114.2 (2)
C3—C2—H2120.9N4—C15—H15A108.7
C1—C2—H2120.9C16—C15—H15A108.7
C4—C3—C2122.61 (19)N4—C15—H15B108.7
C4—C3—N1118.86 (19)C16—C15—H15B108.7
C2—C3—N1118.52 (18)H15A—C15—H15B107.6
C3—C4—C5118.47 (19)C15—C16—H16A109.5
C3—C4—H4120.8C15—C16—H16B109.5
C5—C4—H4120.8H16A—C16—H16B109.5
C6—C5—C4120.35 (18)C15—C16—H16C109.5
C6—C5—H5119.8H16A—C16—H16C109.5
C4—C5—H5119.8H16B—C16—H16C109.5
C5—C6—C1119.55 (18)N4—C17—C18113.5 (2)
C5—C6—C7123.55 (17)N4—C17—H17A108.9
C1—C6—C7116.88 (18)C18—C17—H17A108.9
O3—C7—N2122.99 (18)N4—C17—H17B108.9
O3—C7—C6120.63 (17)C18—C17—H17B108.9
N2—C7—C6116.38 (17)H17A—C17—H17B107.7
N3—C8—C9122.62 (19)C17—C18—H18A109.5
N3—C8—H8118.7C17—C18—H18B109.5
C9—C8—H8118.7H18A—C18—H18B109.5
C10—C9—C14117.46 (18)C17—C18—H18C109.5
C10—C9—C8123.73 (18)H18A—C18—H18C109.5
C14—C9—C8118.80 (19)H18B—C18—H18C109.5
C11—C10—C9121.26 (18)
C7—N2—N3—C8−174.7 (2)N2—N3—C8—C9−178.3 (2)
C6—C1—C2—C3−0.7 (4)N3—C8—C9—C106.9 (3)
C1—C2—C3—C40.6 (4)N3—C8—C9—C14−174.4 (2)
C1—C2—C3—N1−178.9 (2)C14—C9—C10—C110.8 (3)
O1—N1—C3—C4176.0 (2)C8—C9—C10—C11179.6 (2)
O2—N1—C3—C4−4.6 (3)C9—C10—C11—C120.2 (3)
O1—N1—C3—C2−4.4 (3)C15—N4—C12—C13167.7 (2)
O2—N1—C3—C2175.0 (2)C17—N4—C12—C13−18.6 (3)
C2—C3—C4—C5−0.2 (4)C15—N4—C12—C11−12.3 (3)
N1—C3—C4—C5179.4 (2)C17—N4—C12—C11161.3 (2)
C3—C4—C5—C6−0.2 (3)C10—C11—C12—N4179.1 (2)
C4—C5—C6—C10.1 (3)C10—C11—C12—C13−1.0 (3)
C4—C5—C6—C7−178.5 (2)N4—C12—C13—C14−179.4 (2)
C2—C1—C6—C50.3 (3)C11—C12—C13—C140.6 (3)
C2—C1—C6—C7179.1 (2)C12—C13—C14—C90.5 (4)
N3—N2—C7—O30.1 (3)C10—C9—C14—C13−1.2 (3)
N3—N2—C7—C6−179.4 (2)C8—C9—C14—C13179.9 (2)
C5—C6—C7—O3160.9 (2)C12—N4—C15—C1691.3 (3)
C1—C6—C7—O3−17.8 (3)C17—N4—C15—C16−82.7 (3)
C5—C6—C7—N2−19.6 (3)C12—N4—C17—C1893.1 (3)
C1—C6—C7—N2161.7 (2)C15—N4—C17—C18−92.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4B···O3i0.83 (4)2.23 (4)3.009 (3)156 (3)
N2—H2N···O40.88 (2)2.00 (2)2.861 (2)165 (2)
O4—H4A···O3ii0.85 (3)2.06 (4)2.823 (2)149 (3)
O4—H4A···N3ii0.85 (3)2.57 (3)3.250 (3)138 (3)
C5—H5···O3ii0.952.543.308 (2)138
C8—H8···O40.952.503.270 (3)138
C13—H13···O2iii0.952.513.350 (3)148

Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) x, −y+1, z−1/2; (iii) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5231).

References

  • Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem.45, 698–704. [PubMed]
  • Bessy, R. B. N., Prathapachandra, K. M. R. & Suresh, E. (2006). Struct. Chem.17, 201–208.
  • Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  • Bordoloi, M., Kotoky, R., Mahanta, J. J., Sarma, T. C. & Kanjilal, P. B. (2009). Eur. J. Med. Chem.44, 2754–2757. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S. & Kalluraya, B. (2008). Acta Cryst. E64, o1907–o1908. [PMC free article] [PubMed]
  • Galal, S. A., Hegab, K. H., Kassab, A. S., Rodriguez, M. L., Kerwin, S. M., El-Khamry, A. A. & El Diwani, H. I. (2009). Eur. J. Med. Chem.44, 1500–1508. [PubMed]
  • Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Rodríguez-Argüelles, M. C., Ferrari, M. B., Bisceglie, F., Pelizzi, C., Pelosi, G., Pinelli, S. & Sassi, M. (2004). J. Inorg. Biochem.98, 313–321. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem.44, 1311–1316. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography