PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m412.
Published online 2010 March 17. doi:  10.1107/S1600536810007737
PMCID: PMC2983896

1-(6-Ferrocenylhex­yl)-1H-imidazole

Abstract

The title compound, [Fe(C5H5)(C14H19N2)], is characterized by a ferrocenyl group separated from an imidazole functionality by a straight-chain hexyl unit. The two cyclo­penta­dienyl rings of the ferrocenyl group show a marginal inward tilt of 2.17 (2)°. The imidazole unit, which is essentially planar (with a maximum deviation of 0.007 A for one of the N atoms) and tilted away from the ferrocenyl group [dihedral angle between the substituted ferrocenyl ring and the imidazole = 122.6 (1)°], is involved in inter­molecular C—H(...)N inter­actions.

Related literature

For related structures, see: Hua et al. (2004 [triangle]); Nyamori & Bala (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m412-scheme1.jpg

Experimental

Crystal data

  • [Fe(C5H5)(C14H19N2)]
  • M r = 336.25
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m412-efi1.jpg
  • a = 15.587 (3) Å
  • b = 7.6042 (12) Å
  • c = 27.773 (4) Å
  • V = 3291.9 (9) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.91 mm−1
  • T = 173 K
  • 0.40 × 0.24 × 0.02 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.666, T max = 0.751
  • 24220 measured reflections
  • 3061 independent reflections
  • 2017 reflections with I > 2σ(I)
  • R int = 0.121

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.101
  • S = 0.98
  • 3061 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT-NT (Bruker, 2005 [triangle]); data reduction: SAINT-NT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810007737/dn2540sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007737/dn2540Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We wish to thank Dr Jennifer Look for the data collection and the NRF and the University of KwaZulu-Natal for financial support.

supplementary crystallographic information

Comment

The title compound (I) was prepared as part of our study into the development of imidazole based ionic liquids and precursors to N-heterocyclic carbene ligands bearing a ferrocenyl functionality. Related compounds bearing structural similarities to (I) have been communicated by Hua et al. (2004) and Nyamori & Bala (2008). The compound (I) shows a fairly linear alkyl carbon-carbon bond linkage of the ferrocenyl moiety with the imidazole. This is evident from the torsion angles; C10—C11—C12—C13 = -178.3 (3)°, C12—C13—C14—C15 = -177.4 (3)° and C13—C14—C15—C16 = 178.3 (3)°. The average bond distances between the carbon atoms (C11 to C15) is 1.5375 (Å) which is normal for saturated alkyl carbon-carbon bonds. The bond distance between C16—N1 is 1.450 (4) Å as expected. The imidazole ring slightly deviates from planarity as indicated by the torsion angles; N1—C19—N2—C18 = -1.3 (4)° and C17—C18—N2—C19 = 1.2 (4)°. The bond length between C19—N2 is 1.312 (4) Å which is a clear indication of a localized carbon-carbon double bond while those of C18—N2 = 1.379 (4) Å, C17—C18 = 1.361 (5) Å and C17—N1 = 1.365 (4) Å are longer and indicate delocalization of π electrons. This implies that aromaticity of the imidazole ring is also reduced. The torsion angles within the atoms of the ferrocenyl rings indicate that the rings are fairly planar. The two ferrocenyl rings also show a marginal tilt towards each other with an angle of 2.17°. The average bond distance of substituted ferrocenyl ring carbon atoms and the metal centre (Fe1) is found to be 2.039 (3) Å while that of the unsubstituted ferrocenyl ring is obtained as 2.027 (3) Å. A value of 114.0 (3)° is observed for the N1—C16—C15 angle. The dihedral angle between the substituted ferrocenyl ring and the imidazole is found to be 122.6 (1)°. These observations confirm that the molecule is kinked and this, in turn, affects the molecular packing of the molecules which are held together by weak C—H···N interactions with a contact distance of about 2.583 Å.

Experimental

Imidazole(148 mg, 2.17 mmol) was added to acetone (2.0 cm3) and the solution was stirred. Potassium hydroxide powder (128 mg, 2.27 mmol) was then introducedand allowed to dissolve, forming a homogenous solution. The solution was stirred for about 30 minutes and then 6-bromohexylferrocene (834 mg, 2.39 mmol) in acetone (1.0 cm3) was introduced to the solution dropwise and allowed to stir for about 1 hour at room temperature. The solution was then filtered and concentrated. The crude product was passed through a column of silica gel. Diethyl ether recovered unreacted 6-bromohexylferrocene (150 mg)while ethyl acetate/methanol (10:1) afforded the product as yellow crystals (591 mg, 81 %); mp 68-70°C;IR (KBr cm-1) 3090, 2932, 2859, 1655, 1508, 1466, 1439, 1234, 1107,1076, 999, 829, 802, 745, 671, 509, 486; 1H NMR (CDCl3)7.47 (1H, s, NCH), 7.07 (1H, s, NCH), 6.91 (1H, s, NCH), 4.09 (5H, s, C5H5),4.04 (4H, m, C5H4), 3.91 (2H, t, J 7.1, CH2), 2.31 (2H, t, J 7.3, CH2), 1.77 (2H, m, CH2), 1.48 (2H,m, CH2), 1.31 (4H, m, 2 x CH2); 13C NMR (CDCl3)137.48, 129.76, 119.22, 89.45, 68.87, 68.45, 67.48, 47.42, 31.44, 31.37, 29.89,29.35, 26.83; m/z (EI) 337 (M++1, 14%), 336 (M+, 61%),272 (19), 271 (100), 269 (10), 199 (9), 121 (26); Anal. Calc for C19H24N2Fe:C, 67.8; H, 7.2; N, 8.3; [M+], 336.128888. Found: C, 67.5; H, 7.3;N, 8.0; [M+], 336.128905.

Refinement

All H-atoms were refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N) for NH, and O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O) for OH.

Figures

Fig. 1.
Molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.

Crystal data

[Fe(C5H5)(C14H19N2)]F(000) = 1424
Mr = 336.25Dx = 1.357 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abθ = 1.5–25.5°
a = 15.587 (3) ŵ = 0.91 mm1
b = 7.6042 (12) ÅT = 173 K
c = 27.773 (4) ÅPlate, yellow
V = 3291.9 (9) Å30.40 × 0.24 × 0.02 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer3061 independent reflections
Radiation source: fine-focus sealed tube2017 reflections with I > 2σ(I)
graphiteRint = 0.121
[var phi] and ω scansθmax = 25.5°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −18→18
Tmin = 0.666, Tmax = 0.751k = −9→8
24220 measured reflectionsl = −33→33

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 0.98w = 1/[σ2(Fo2) + (0.0515P)2] where P = (Fo2 + 2Fc2)/3
3061 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = −0.44 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.0402 (2)0.4449 (4)0.43353 (12)0.0507 (9)
H10.06510.49760.46030.061*
C2−0.0306 (2)0.3298 (4)0.43400 (12)0.0508 (9)
H2−0.06110.29380.46110.061*
C3−0.0470 (2)0.2788 (4)0.38591 (13)0.0508 (9)
H3−0.09020.20310.37570.061*
C40.0136 (2)0.3629 (4)0.35620 (12)0.0463 (8)
H40.01750.35160.32290.056*
C50.0669 (2)0.4665 (4)0.38522 (13)0.0493 (8)
H50.11190.53690.37460.059*
C60.10463 (19)−0.0075 (4)0.44559 (12)0.0410 (8)
H60.0737−0.04900.47190.049*
C70.0912 (2)−0.0557 (4)0.39673 (12)0.0493 (9)
H70.0501−0.13430.38540.059*
C80.1513 (2)0.0373 (4)0.36845 (12)0.0499 (9)
H80.15680.03070.33520.060*
C90.20114 (19)0.1412 (5)0.39933 (11)0.0448 (8)
H90.24530.21550.38970.054*
C100.17368 (18)0.1155 (4)0.44742 (11)0.0368 (7)
C110.21197 (19)0.1987 (4)0.49179 (11)0.0439 (8)
H11A0.26670.14260.49830.053*
H11B0.22330.32160.48490.053*
C120.15795 (19)0.1885 (4)0.53670 (10)0.0438 (8)
H12A0.14810.06580.54450.053*
H12B0.10260.24190.53020.053*
C130.1980 (2)0.2788 (4)0.58019 (11)0.0464 (8)
H13A0.25540.23310.58490.056*
H13B0.20280.40370.57360.056*
C140.14718 (19)0.2535 (4)0.62592 (11)0.0445 (8)
H14A0.14450.12870.63300.053*
H14B0.08900.29380.62040.053*
C150.1825 (2)0.3479 (4)0.66974 (10)0.0450 (8)
H15A0.18680.47240.66250.054*
H15B0.24000.30480.67610.054*
C160.1286 (2)0.3249 (4)0.71481 (12)0.0491 (9)
H16A0.14960.40460.73940.059*
H16B0.06990.35780.70760.059*
C170.0772 (2)0.0108 (5)0.72108 (11)0.0513 (9)
H170.03290.01370.69870.062*
C180.1031 (2)−0.1306 (5)0.74738 (13)0.0577 (9)
H180.0784−0.24190.74610.069*
C190.1837 (2)0.0833 (5)0.76738 (11)0.0496 (8)
H190.22550.15070.78250.060*
N10.12910 (15)0.1475 (4)0.73396 (9)0.0434 (7)
N20.17139 (18)−0.0843 (4)0.77628 (10)0.0572 (7)
Fe10.07515 (2)0.20943 (5)0.405519 (14)0.03346 (15)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.055 (2)0.041 (2)0.057 (2)0.0156 (17)−0.0107 (18)−0.0145 (17)
C20.051 (2)0.048 (2)0.054 (2)0.0168 (17)0.0168 (17)0.0046 (17)
C30.0330 (16)0.046 (2)0.074 (2)0.0070 (15)−0.0059 (16)−0.0014 (19)
C40.0495 (19)0.046 (2)0.0437 (19)0.0134 (17)−0.0033 (16)0.0051 (16)
C50.048 (2)0.0306 (18)0.069 (2)0.0056 (15)−0.0020 (18)0.0077 (17)
C60.0401 (17)0.0340 (18)0.049 (2)0.0011 (14)0.0006 (14)0.0104 (16)
C70.048 (2)0.0349 (19)0.065 (2)0.0036 (15)−0.0140 (17)−0.0059 (17)
C80.053 (2)0.049 (2)0.048 (2)0.0177 (17)0.0018 (17)−0.0085 (17)
C90.0358 (16)0.0439 (19)0.055 (2)0.0078 (14)0.0064 (15)0.0071 (17)
C100.0357 (16)0.0313 (17)0.0433 (19)0.0038 (14)−0.0035 (14)0.0061 (15)
C110.0367 (16)0.0397 (19)0.055 (2)−0.0007 (14)−0.0069 (14)0.0066 (16)
C120.0376 (17)0.049 (2)0.0451 (19)−0.0048 (15)−0.0033 (14)0.0016 (16)
C130.0424 (18)0.046 (2)0.0505 (19)−0.0038 (15)−0.0007 (15)0.0042 (16)
C140.0409 (17)0.045 (2)0.048 (2)−0.0015 (15)−0.0062 (15)0.0029 (15)
C150.0459 (18)0.0388 (19)0.050 (2)−0.0022 (15)−0.0051 (15)0.0022 (16)
C160.054 (2)0.041 (2)0.053 (2)0.0070 (15)−0.0014 (17)−0.0021 (16)
C170.0445 (19)0.063 (2)0.0463 (19)−0.0051 (18)0.0012 (17)−0.0018 (18)
C180.061 (2)0.053 (2)0.059 (2)−0.0041 (19)0.0139 (19)−0.003 (2)
C190.0413 (18)0.056 (2)0.052 (2)0.0039 (17)−0.0037 (16)−0.0029 (18)
N10.0406 (15)0.0482 (17)0.0413 (16)0.0016 (13)0.0005 (12)−0.0042 (13)
N20.0596 (19)0.058 (2)0.0542 (18)0.0079 (16)0.0053 (15)0.0055 (16)
Fe10.0323 (2)0.0293 (2)0.0388 (3)0.00365 (19)0.00101 (19)0.0008 (2)

Geometric parameters (Å, °)

C1—C21.409 (5)C10—C111.508 (4)
C1—C51.414 (4)C10—Fe12.055 (3)
C1—Fe12.027 (3)C11—C121.507 (4)
C1—H10.9300C11—H11A0.9700
C2—C31.414 (5)C11—H11B0.9700
C2—Fe12.044 (3)C12—C131.523 (4)
C2—H20.9300C12—H12A0.9700
C3—C41.408 (4)C12—H12B0.9700
C3—Fe12.049 (3)C13—C141.509 (4)
C3—H30.9300C13—H13A0.9700
C4—C51.401 (4)C13—H13B0.9700
C4—Fe12.039 (3)C14—C151.517 (4)
C4—H40.9300C14—H14A0.9700
C5—Fe12.039 (3)C14—H14B0.9700
C5—H50.9300C15—C161.518 (4)
C6—C71.421 (4)C15—H15A0.9700
C6—C101.427 (4)C15—H15B0.9700
C6—Fe12.042 (3)C16—N11.450 (4)
C6—H60.9300C16—H16A0.9700
C7—C81.412 (5)C16—H16B0.9700
C7—Fe12.046 (3)C17—C181.361 (5)
C7—H70.9300C17—N11.365 (4)
C8—C91.402 (4)C17—H170.9300
C8—Fe12.045 (3)C18—N21.379 (4)
C8—H80.9300C18—H180.9300
C9—C101.416 (4)C19—N21.312 (4)
C9—Fe12.038 (3)C19—N11.351 (4)
C9—H90.9300C19—H190.9300
C2—C1—C5108.2 (3)H13A—C13—H13B107.7
C2—C1—Fe170.42 (18)C13—C14—C15115.1 (3)
C5—C1—Fe170.09 (17)C13—C14—H14A108.5
C2—C1—H1125.9C15—C14—H14A108.5
C5—C1—H1125.9C13—C14—H14B108.5
Fe1—C1—H1125.2C15—C14—H14B108.5
C1—C2—C3107.6 (3)H14A—C14—H14B107.5
C1—C2—Fe169.08 (18)C14—C15—C16114.0 (3)
C3—C2—Fe169.98 (17)C14—C15—H15A108.8
C1—C2—H2126.2C16—C15—H15A108.8
C3—C2—H2126.2C14—C15—H15B108.8
Fe1—C2—H2126.3C16—C15—H15B108.8
C4—C3—C2107.9 (3)H15A—C15—H15B107.7
C4—C3—Fe169.48 (17)N1—C16—C15114.0 (3)
C2—C3—Fe169.61 (17)N1—C16—H16A108.8
C4—C3—H3126.0C15—C16—H16A108.8
C2—C3—H3126.0N1—C16—H16B108.8
Fe1—C3—H3126.4C15—C16—H16B108.8
C5—C4—C3108.5 (3)H16A—C16—H16B107.6
C5—C4—Fe169.89 (18)C18—C17—N1106.6 (3)
C3—C4—Fe170.25 (18)C18—C17—H17126.7
C5—C4—H4125.8N1—C17—H17126.7
C3—C4—H4125.8C17—C18—N2109.8 (3)
Fe1—C4—H4125.7C17—C18—H18125.1
C4—C5—C1107.8 (3)N2—C18—H18125.1
C4—C5—Fe169.94 (18)N2—C19—N1112.9 (3)
C1—C5—Fe169.19 (17)N2—C19—H19123.6
C4—C5—H5126.1N1—C19—H19123.6
C1—C5—H5126.1C19—N1—C17106.1 (3)
Fe1—C5—H5126.3C19—N1—C16126.3 (3)
C7—C6—C10108.3 (3)C17—N1—C16127.5 (3)
C7—C6—Fe169.80 (18)C19—N2—C18104.6 (3)
C10—C6—Fe170.11 (16)C1—Fe1—C468.03 (13)
C7—C6—H6125.8C1—Fe1—C9121.05 (14)
C10—C6—H6125.8C4—Fe1—C9122.84 (13)
Fe1—C6—H6125.8C1—Fe1—C540.72 (13)
C8—C7—C6107.7 (3)C4—Fe1—C540.18 (12)
C8—C7—Fe169.76 (19)C9—Fe1—C5106.32 (14)
C6—C7—Fe169.52 (17)C1—Fe1—C6124.39 (14)
C8—C7—H7126.2C4—Fe1—C6159.09 (13)
C6—C7—H7126.2C9—Fe1—C667.90 (12)
Fe1—C7—H7126.1C5—Fe1—C6159.95 (13)
C9—C8—C7108.1 (3)C1—Fe1—C240.50 (13)
C9—C8—Fe169.68 (17)C4—Fe1—C267.94 (13)
C7—C8—Fe169.85 (18)C9—Fe1—C2157.40 (14)
C9—C8—H8126.0C5—Fe1—C268.11 (14)
C7—C8—H8126.0C6—Fe1—C2109.39 (13)
Fe1—C8—H8126.1C1—Fe1—C8156.16 (15)
C8—C9—C10109.4 (3)C4—Fe1—C8107.53 (13)
C8—C9—Fe170.17 (18)C9—Fe1—C840.15 (13)
C10—C9—Fe170.40 (16)C5—Fe1—C8120.74 (14)
C8—C9—H9125.3C6—Fe1—C868.08 (13)
C10—C9—H9125.3C2—Fe1—C8161.64 (14)
Fe1—C9—H9125.7C1—Fe1—C7161.63 (14)
C9—C10—C6106.6 (3)C4—Fe1—C7122.76 (13)
C9—C10—C11126.4 (3)C9—Fe1—C767.78 (14)
C6—C10—C11127.1 (3)C5—Fe1—C7156.86 (14)
C9—C10—Fe169.12 (16)C6—Fe1—C740.68 (12)
C6—C10—Fe169.14 (16)C2—Fe1—C7125.83 (14)
C11—C10—Fe1127.8 (2)C8—Fe1—C740.39 (13)
C12—C11—C10115.7 (2)C1—Fe1—C367.98 (13)
C12—C11—H11A108.4C4—Fe1—C340.27 (12)
C10—C11—H11A108.4C9—Fe1—C3159.74 (14)
C12—C11—H11B108.4C5—Fe1—C367.75 (13)
C10—C11—H11B108.4C6—Fe1—C3124.18 (13)
H11A—C11—H11B107.4C2—Fe1—C340.42 (13)
C11—C12—C13113.9 (2)C8—Fe1—C3124.75 (14)
C11—C12—H12A108.8C7—Fe1—C3109.58 (13)
C13—C12—H12A108.8C1—Fe1—C10106.89 (13)
C11—C12—H12B108.8C4—Fe1—C10158.58 (13)
C13—C12—H12B108.8C9—Fe1—C1040.48 (11)
H12A—C12—H12B107.7C5—Fe1—C10122.47 (13)
C14—C13—C12113.3 (3)C6—Fe1—C1040.75 (11)
C14—C13—H13A108.9C2—Fe1—C10122.62 (13)
C12—C13—H13A108.9C8—Fe1—C1068.22 (13)
C14—C13—H13B108.9C7—Fe1—C1068.52 (12)
C12—C13—H13B108.9C3—Fe1—C10159.11 (13)
C5—C1—C2—C30.6 (4)C1—C5—Fe1—C7169.6 (3)
Fe1—C1—C2—C3−59.6 (2)C4—C5—Fe1—C3−37.51 (19)
C5—C1—C2—Fe160.2 (2)C1—C5—Fe1—C381.6 (2)
C1—C2—C3—C4−0.1 (4)C4—C5—Fe1—C10163.07 (18)
Fe1—C2—C3—C4−59.1 (2)C1—C5—Fe1—C10−77.8 (2)
C1—C2—C3—Fe159.0 (2)C7—C6—Fe1—C1165.47 (19)
C2—C3—C4—C5−0.5 (3)C10—C6—Fe1—C1−75.2 (2)
Fe1—C3—C4—C5−59.7 (2)C7—C6—Fe1—C444.1 (4)
C2—C3—C4—Fe159.2 (2)C10—C6—Fe1—C4163.4 (3)
C3—C4—C5—C10.8 (3)C7—C6—Fe1—C9−81.2 (2)
Fe1—C4—C5—C1−59.0 (2)C10—C6—Fe1—C938.15 (17)
C3—C4—C5—Fe159.9 (2)C7—C6—Fe1—C5−158.0 (4)
C2—C1—C5—C4−0.9 (3)C10—C6—Fe1—C5−38.7 (5)
Fe1—C1—C5—C459.5 (2)C7—C6—Fe1—C2122.9 (2)
C2—C1—C5—Fe1−60.4 (2)C10—C6—Fe1—C2−117.8 (2)
C10—C6—C7—C8−0.2 (3)C7—C6—Fe1—C8−37.70 (19)
Fe1—C6—C7—C859.5 (2)C10—C6—Fe1—C881.6 (2)
C10—C6—C7—Fe1−59.7 (2)C10—C6—Fe1—C7119.3 (3)
C6—C7—C8—C90.0 (4)C7—C6—Fe1—C380.3 (2)
Fe1—C7—C8—C959.4 (2)C10—C6—Fe1—C3−160.38 (19)
C6—C7—C8—Fe1−59.4 (2)C7—C6—Fe1—C10−119.3 (3)
C7—C8—C9—C100.2 (3)C3—C2—Fe1—C1119.0 (3)
Fe1—C8—C9—C1059.7 (2)C1—C2—Fe1—C4−81.5 (2)
C7—C8—C9—Fe1−59.5 (2)C3—C2—Fe1—C437.5 (2)
C8—C9—C10—C6−0.3 (3)C1—C2—Fe1—C941.7 (4)
Fe1—C9—C10—C659.3 (2)C3—C2—Fe1—C9160.7 (3)
C8—C9—C10—C11178.2 (3)C1—C2—Fe1—C5−38.1 (2)
Fe1—C9—C10—C11−122.2 (3)C3—C2—Fe1—C580.9 (2)
C8—C9—C10—Fe1−59.6 (2)C1—C2—Fe1—C6120.7 (2)
C7—C6—C10—C90.3 (3)C3—C2—Fe1—C6−120.3 (2)
Fe1—C6—C10—C9−59.26 (19)C1—C2—Fe1—C8−160.6 (4)
C7—C6—C10—C11−178.2 (3)C3—C2—Fe1—C8−41.6 (5)
Fe1—C6—C10—C11122.2 (3)C1—C2—Fe1—C7163.14 (19)
C7—C6—C10—Fe159.6 (2)C3—C2—Fe1—C7−77.9 (2)
C9—C10—C11—C12164.6 (3)C1—C2—Fe1—C3−119.0 (3)
C6—C10—C11—C12−17.2 (4)C1—C2—Fe1—C1077.4 (2)
Fe1—C10—C11—C1274.0 (3)C3—C2—Fe1—C10−163.61 (19)
C10—C11—C12—C13−178.3 (3)C9—C8—Fe1—C145.3 (4)
C11—C12—C13—C14−174.7 (3)C7—C8—Fe1—C1164.5 (3)
C12—C13—C14—C15−177.4 (3)C9—C8—Fe1—C4120.5 (2)
C13—C14—C15—C16178.1 (3)C7—C8—Fe1—C4−120.3 (2)
C14—C15—C16—N168.2 (3)C7—C8—Fe1—C9119.2 (3)
N1—C17—C18—N2−0.7 (4)C9—C8—Fe1—C578.6 (2)
N2—C19—N1—C170.9 (3)C7—C8—Fe1—C5−162.19 (19)
N2—C19—N1—C16−177.2 (3)C9—C8—Fe1—C6−81.3 (2)
C18—C17—N1—C19−0.1 (3)C7—C8—Fe1—C637.96 (18)
C18—C17—N1—C16177.9 (3)C9—C8—Fe1—C2−166.9 (4)
C15—C16—N1—C1991.5 (4)C7—C8—Fe1—C2−47.7 (5)
C15—C16—N1—C17−86.2 (4)C9—C8—Fe1—C7−119.2 (3)
N1—C19—N2—C18−1.3 (4)C9—C8—Fe1—C3161.50 (19)
C17—C18—N2—C191.2 (4)C7—C8—Fe1—C3−79.3 (2)
C2—C1—Fe1—C481.3 (2)C9—C8—Fe1—C10−37.19 (18)
C5—C1—Fe1—C4−37.42 (19)C7—C8—Fe1—C1082.0 (2)
C2—C1—Fe1—C9−162.62 (19)C8—C7—Fe1—C1−160.0 (4)
C5—C1—Fe1—C978.7 (2)C6—C7—Fe1—C1−41.1 (5)
C2—C1—Fe1—C5118.7 (3)C8—C7—Fe1—C478.3 (2)
C2—C1—Fe1—C6−79.5 (2)C6—C7—Fe1—C4−162.83 (17)
C5—C1—Fe1—C6161.76 (18)C8—C7—Fe1—C9−37.44 (18)
C5—C1—Fe1—C2−118.7 (3)C6—C7—Fe1—C981.47 (19)
C2—C1—Fe1—C8165.0 (3)C8—C7—Fe1—C542.0 (4)
C5—C1—Fe1—C846.3 (4)C6—C7—Fe1—C5160.9 (3)
C2—C1—Fe1—C7−48.2 (5)C8—C7—Fe1—C6−118.9 (3)
C5—C1—Fe1—C7−167.0 (4)C8—C7—Fe1—C2163.3 (2)
C2—C1—Fe1—C337.7 (2)C6—C7—Fe1—C2−77.8 (2)
C5—C1—Fe1—C3−81.0 (2)C6—C7—Fe1—C8118.9 (3)
C2—C1—Fe1—C10−120.8 (2)C8—C7—Fe1—C3121.0 (2)
C5—C1—Fe1—C10120.5 (2)C6—C7—Fe1—C3−120.06 (19)
C5—C4—Fe1—C137.91 (19)C8—C7—Fe1—C10−81.2 (2)
C3—C4—Fe1—C1−81.4 (2)C6—C7—Fe1—C1037.71 (17)
C5—C4—Fe1—C9−75.8 (2)C4—C3—Fe1—C181.5 (2)
C3—C4—Fe1—C9164.9 (2)C2—C3—Fe1—C1−37.8 (2)
C3—C4—Fe1—C5−119.3 (3)C2—C3—Fe1—C4−119.3 (3)
C5—C4—Fe1—C6168.5 (3)C4—C3—Fe1—C9−39.2 (5)
C3—C4—Fe1—C649.2 (4)C2—C3—Fe1—C9−158.5 (4)
C5—C4—Fe1—C281.8 (2)C4—C3—Fe1—C537.42 (19)
C3—C4—Fe1—C2−37.6 (2)C2—C3—Fe1—C5−81.9 (2)
C5—C4—Fe1—C8−117.2 (2)C4—C3—Fe1—C6−160.95 (19)
C3—C4—Fe1—C8123.5 (2)C2—C3—Fe1—C679.7 (2)
C5—C4—Fe1—C7−158.9 (2)C4—C3—Fe1—C2119.3 (3)
C3—C4—Fe1—C781.8 (2)C4—C3—Fe1—C8−75.4 (2)
C5—C4—Fe1—C3119.3 (3)C2—C3—Fe1—C8165.2 (2)
C5—C4—Fe1—C10−42.3 (4)C4—C3—Fe1—C7−117.9 (2)
C3—C4—Fe1—C10−161.6 (3)C2—C3—Fe1—C7122.7 (2)
C8—C9—Fe1—C1−160.4 (2)C4—C3—Fe1—C10161.1 (3)
C10—C9—Fe1—C179.4 (2)C2—C3—Fe1—C1041.8 (4)
C8—C9—Fe1—C4−77.9 (2)C9—C10—Fe1—C1−118.3 (2)
C10—C9—Fe1—C4161.90 (18)C6—C10—Fe1—C1123.5 (2)
C8—C9—Fe1—C5−118.6 (2)C11—C10—Fe1—C12.1 (3)
C10—C9—Fe1—C5121.24 (19)C9—C10—Fe1—C4−45.6 (4)
C8—C9—Fe1—C681.8 (2)C6—C10—Fe1—C4−163.8 (3)
C10—C9—Fe1—C6−38.40 (17)C11—C10—Fe1—C474.9 (4)
C8—C9—Fe1—C2169.3 (3)C6—C10—Fe1—C9−118.2 (3)
C10—C9—Fe1—C249.1 (4)C11—C10—Fe1—C9120.5 (3)
C10—C9—Fe1—C8−120.2 (3)C9—C10—Fe1—C5−76.6 (2)
C8—C9—Fe1—C737.66 (19)C6—C10—Fe1—C5165.29 (19)
C10—C9—Fe1—C7−82.49 (19)C11—C10—Fe1—C543.9 (3)
C8—C9—Fe1—C3−48.8 (5)C9—C10—Fe1—C6118.2 (3)
C10—C9—Fe1—C3−169.0 (3)C11—C10—Fe1—C6−121.4 (3)
C8—C9—Fe1—C10120.2 (3)C9—C10—Fe1—C2−159.8 (2)
C4—C5—Fe1—C1−119.1 (3)C6—C10—Fe1—C282.0 (2)
C1—C5—Fe1—C4119.1 (3)C11—C10—Fe1—C2−39.3 (3)
C4—C5—Fe1—C9121.94 (19)C9—C10—Fe1—C836.90 (19)
C1—C5—Fe1—C9−118.9 (2)C6—C10—Fe1—C8−81.3 (2)
C4—C5—Fe1—C6−168.0 (3)C11—C10—Fe1—C8157.4 (3)
C1—C5—Fe1—C6−48.9 (5)C9—C10—Fe1—C780.5 (2)
C4—C5—Fe1—C2−81.3 (2)C6—C10—Fe1—C7−37.65 (18)
C1—C5—Fe1—C237.86 (19)C11—C10—Fe1—C7−159.0 (3)
C4—C5—Fe1—C880.7 (2)C9—C10—Fe1—C3169.3 (3)
C1—C5—Fe1—C8−160.12 (19)C6—C10—Fe1—C351.2 (4)
C4—C5—Fe1—C750.4 (4)C11—C10—Fe1—C3−70.2 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C19—H19···N2i0.932.583.399 (5)147

Symmetry codes: (i) −x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2540).

References

  • Bruker (2005). APEX2, SAINT-NT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hua, H., Huang, G.-S., Liang, Y.-M., Wu, X.-L., Ma, Y.-X. & Chen, B.-H. (2004). Acta Cryst. E60, m761–m763.
  • Nyamori, V. O. & Bala, M. D. (2008). Acta Cryst. E64, m1451. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography