PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o985.
Published online 2010 March 31. doi:  10.1107/S1600536810011268
PMCID: PMC2983893

Dimethyl 4-(3-hydroxy­phen­yl)-2,6-dimethyl-1,4-dihydro­pyridine-3,5-dicarboxyl­ate

Abstract

The 1,4-dihydro­pyridine ring in the title compound, C17H19NO5, has a flattened-boat conformation, and the benzene ring is almost orthogonal to it [dihedral angle = 82.98 (12)°]. The hydr­oxy group is disordered over two positions in a 0.780 (4):0.220 (4) ratio. In the crystal, hydrogen-bonding inter­actions of the type Na—H(...)Oc and Oh—H(...)Oc (a = amine, c = carbonyl and h = hydr­oxy) link the mol­ecules into a three-dimensional network.

Related literature

For further synthetic details, general background to this work and related structures, see: Rathore et al. (2009 [triangle]); Reddy et al. (2010 [triangle]). For ring conformations, see: Cremer & Pople, (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o985-scheme1.jpg

Experimental

Crystal data

  • C17H19NO5
  • M r = 317.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o985-efi1.jpg
  • a = 10.4863 (7) Å
  • b = 10.4091 (7) Å
  • c = 14.8702 (11) Å
  • β = 99.259 (4)°
  • V = 1601.98 (19) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 K
  • 0.17 × 0.14 × 0.11 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.646, T max = 0.746
  • 25465 measured reflections
  • 2831 independent reflections
  • 1777 reflections with I > 2σ(I)
  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.140
  • S = 0.96
  • 2831 reflections
  • 226 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) and PLATON (Spek, 2009 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810011268/hb5373sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011268/hb5373Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

supplementary crystallographic information

Comment

The title compound, (I), was determined as a part of an on-going study of Hantzsch 1,4-dihydropyridines which are notable for their biological activity (Rathore et al., 2009; Reddy et al., 2010).

The 1,4-dihydropyridine ring in (I), Fig. 1, has a flattened-boat conformation with the N1 [0.105 (4) Å] and C3 [0.267 (4) Å] atoms lying above the least-squares plane through the C1,C2,C4, and C5 atoms r.m.s. deviation = 0.0048 Å]. The ring puckering parameters (Cremer & Pople, 1975)are Q = 0.221 (2) Å, θ = 107.0 (5) °, and [var phi]2 = 357.1 (6) °. The aryl ring is orthogonal to the 1,4-dihydropyridine ring, with the dihedral angle between their respective least-squares planes being 82.98 (12) °.

The crystal structure features significant hydrogen bonding interactions, Table 1. The NamineH···Ocarbonyl interactions lead to chains with glide symmetry along the c axis. OhydroxylH···Ocarbonyl hydrogen bonds exist normal to the chain resulting in a three-dimensional network, Fig. 2. As noted in the Experimental, the hydroxyl group is disordered over two positions so that the above description pertains to the major component of the structure only. The minor component of the disorder allows for the formation of OhydroxyH···Ohydroxy hydrogen bonds, Table 1, to provide addiotnal cohesion to the crystal packing.

Experimental

Dimethyl 1,4-dihydro-4-(3-hydroxyphenyl)-2,6-dimethylpyridine-3,5-dicarboxylate was prepared according to Hantzsch pyridine synthesis (Rathore et al., 2009). To a mixture of 3-hydroxybenzaldehyde (1.221 g, 10 mmol), methyl acetoacetate (2.26 ml, 20 mmol) and ammonium acetate (0.771 g, 10 mmol) in ethanol (10 ml) was added and heated over water bath for about 15 minutes with shaking to ensure thorough mixing. After 15 min, the reaction mixture was kept aside for two days. The solid that separated out was filtered and washed with an ethanol/diethyl ether mixture (1:4). The purity of the crude product was checked through TLC and recrystallized from an ethanol/chloroform mixture (3:2) to yield colourless blocks of (I). Yield: 77%, m. pt. 500–501 K.

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The remaining H were located from a difference map and refined with O–H = 0.82±0.01 and N–H = 0.86±0.01, and with Uiso(H) = nUeq(parent atom), with n = 1.5 for O and n = 1.2 for N. The 3-hydroxyl group was found to be disordered over two positions. The anisotropic displacement ellipsoids were constrained to be equal for the two hydroxyl-O atoms and the major component had a site occupancy factor = 0.780 (4).

Figures

Fig. 1.
The molecular structure of (I) showing displacement ellipsoids at the 35% probability level. For reasons of clarity, only the major component of the disorder is shown.
Fig. 2.
A view of the unit cell content of (I) shown in projection down the b axis. The N–H···O hydrogen bonds (blue dashed lines) link molecules into supramolecular chains along the c axis. These are connected into the three-dimensional ...

Crystal data

C17H19NO5F(000) = 672
Mr = 317.33Dx = 1.316 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 250 reflections
a = 10.4863 (7) Åθ = 2.0–25.0°
b = 10.4091 (7) ŵ = 0.10 mm1
c = 14.8702 (11) ÅT = 293 K
β = 99.259 (4)°Block, colourless
V = 1601.98 (19) Å30.17 × 0.14 × 0.11 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer2831 independent reflections
Radiation source: fine-focus sealed tube1777 reflections with I > 2σ(I)
graphiteRint = 0.063
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −12→12
Tmin = 0.646, Tmax = 0.746k = −12→12
25465 measured reflectionsl = −17→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.140w = 1/[σ2(Fo2) + (0.060P)2 + 0.9343P] where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
2831 reflectionsΔρmax = 0.20 e Å3
226 parametersΔρmin = −0.30 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0061 (15)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O11.00543 (18)0.26412 (19)0.30899 (11)0.0533 (5)
O21.1268 (2)0.1391 (2)0.41024 (13)0.0691 (7)
O30.69399 (19)0.57282 (18)0.39888 (12)0.0550 (6)
O40.6633 (2)0.5861 (2)0.54328 (14)0.0695 (7)
N10.9365 (2)0.2976 (2)0.61286 (13)0.0415 (6)
H1N0.963 (2)0.277 (2)0.6689 (9)0.050*
C11.0040 (2)0.2429 (2)0.55046 (15)0.0363 (6)
C20.9694 (2)0.2726 (2)0.46116 (15)0.0334 (6)
C30.8480 (2)0.3508 (2)0.42852 (15)0.0343 (6)
H30.86760.41120.38200.041*
C40.8074 (2)0.4287 (2)0.50609 (16)0.0343 (6)
C50.8478 (2)0.3961 (2)0.59392 (16)0.0366 (6)
C61.1099 (3)0.1549 (3)0.59385 (18)0.0516 (7)
H6A1.09010.06830.57420.077*
H6B1.11690.15960.65890.077*
H6C1.19020.18050.57620.077*
C71.0337 (2)0.2271 (3)0.38735 (17)0.0402 (6)
C81.1905 (4)0.0913 (4)0.3373 (2)0.0949 (14)
H8A1.12860.04810.29290.142*
H8B1.25740.03220.36180.142*
H8C1.22760.16190.30900.142*
C90.7183 (2)0.5346 (2)0.47692 (17)0.0397 (6)
C100.5688 (3)0.6853 (3)0.5194 (2)0.0778 (11)
H10A0.60940.75910.49750.117*
H10B0.53180.70860.57210.117*
H10C0.50200.65440.47250.117*
C110.8128 (3)0.4554 (3)0.67894 (17)0.0533 (8)
H11A0.85030.53960.68730.080*
H11B0.84530.40270.73050.080*
H11C0.72060.46190.67320.080*
C120.7382 (2)0.2639 (2)0.38472 (16)0.0370 (6)
C130.6625 (3)0.2969 (3)0.30306 (18)0.0482 (7)
H130.67910.37280.27400.058*
O50.4875 (3)0.2541 (3)0.1858 (2)0.0789 (10)0.780 (4)
H5O0.437 (4)0.196 (4)0.167 (4)0.118*0.780 (4)
C140.5613 (3)0.2175 (3)0.2637 (2)0.0558 (8)0.780 (4)
C150.5379 (3)0.1037 (3)0.3039 (2)0.0558 (8)0.780 (4)
H150.47270.04930.27650.067*0.780 (4)
C160.6119 (3)0.0712 (3)0.3850 (2)0.0583 (8)0.780 (4)
H160.5955−0.00550.41310.070*0.780 (4)
O5'0.5794 (11)−0.0300 (9)0.4212 (6)0.0789 (10)0.220 (4)
H5O'0.528 (13)−0.059 (12)0.379 (6)0.118*0.220 (4)
C14'0.5613 (3)0.2175 (3)0.2637 (2)0.0558 (8)0.220 (4)
H14'0.50960.24220.20970.067*0.220 (4)
C15'0.5379 (3)0.1037 (3)0.3039 (2)0.0558 (8)0.220 (4)
H15'0.47270.04930.27650.067*0.220 (4)
C16'0.6119 (3)0.0712 (3)0.3850 (2)0.0583 (8)0.220 (4)
C170.7108 (3)0.1501 (3)0.42606 (19)0.0475 (7)
H170.75910.12650.48170.057*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0573 (12)0.0738 (14)0.0294 (10)−0.0004 (10)0.0084 (9)−0.0038 (9)
O20.0645 (14)0.0967 (17)0.0491 (12)0.0339 (13)0.0186 (10)0.0002 (11)
O30.0681 (14)0.0489 (12)0.0436 (12)0.0142 (10)−0.0044 (9)0.0045 (9)
O40.0840 (16)0.0704 (14)0.0561 (13)0.0429 (13)0.0169 (11)0.0036 (11)
N10.0538 (14)0.0458 (13)0.0250 (11)0.0107 (11)0.0064 (10)0.0065 (9)
C10.0368 (14)0.0382 (14)0.0340 (13)−0.0006 (11)0.0061 (11)0.0011 (11)
C20.0348 (13)0.0363 (14)0.0290 (12)−0.0031 (11)0.0046 (10)−0.0005 (10)
C30.0391 (14)0.0368 (14)0.0265 (12)0.0012 (11)0.0033 (10)0.0021 (10)
C40.0370 (14)0.0317 (13)0.0340 (13)−0.0001 (11)0.0052 (11)−0.0003 (10)
C50.0439 (15)0.0335 (14)0.0336 (13)−0.0018 (12)0.0096 (11)−0.0001 (10)
C60.0528 (17)0.0592 (18)0.0409 (15)0.0145 (14)0.0020 (13)0.0068 (13)
C70.0349 (14)0.0493 (16)0.0361 (15)−0.0055 (13)0.0048 (11)−0.0050 (12)
C80.080 (3)0.144 (4)0.066 (2)0.048 (3)0.030 (2)−0.015 (2)
C90.0432 (15)0.0337 (14)0.0404 (15)0.0006 (12)0.0010 (12)−0.0036 (12)
C100.081 (2)0.070 (2)0.083 (2)0.038 (2)0.015 (2)−0.0006 (19)
C110.074 (2)0.0536 (18)0.0348 (15)0.0107 (15)0.0149 (14)−0.0015 (12)
C120.0357 (14)0.0392 (15)0.0353 (13)0.0072 (12)0.0032 (11)−0.0059 (11)
C130.0542 (17)0.0432 (16)0.0429 (15)0.0026 (13)−0.0057 (13)−0.0051 (12)
O50.089 (2)0.0661 (19)0.0653 (18)−0.0201 (15)−0.0358 (16)0.0042 (14)
C140.0505 (18)0.062 (2)0.0482 (17)0.0063 (15)−0.0117 (14)−0.0169 (15)
C150.0447 (17)0.0486 (18)0.071 (2)−0.0035 (14)0.0014 (15)−0.0187 (15)
C160.0500 (18)0.0465 (18)0.078 (2)−0.0044 (14)0.0081 (16)−0.0033 (15)
O5'0.089 (2)0.0661 (19)0.0653 (18)−0.0201 (15)−0.0358 (16)0.0042 (14)
C14'0.0505 (18)0.062 (2)0.0482 (17)0.0063 (15)−0.0117 (14)−0.0169 (15)
C15'0.0447 (17)0.0486 (18)0.071 (2)−0.0035 (14)0.0014 (15)−0.0187 (15)
C16'0.0500 (18)0.0465 (18)0.078 (2)−0.0044 (14)0.0081 (16)−0.0033 (15)
C170.0426 (16)0.0487 (17)0.0487 (16)−0.0018 (13)−0.0003 (13)0.0022 (13)

Geometric parameters (Å, °)

O1—C71.218 (3)C10—H10B0.9600
O2—C71.342 (3)C10—H10C0.9600
O2—C81.450 (4)C11—H11A0.9600
O3—C91.214 (3)C11—H11B0.9600
O4—C91.333 (3)C11—H11C0.9600
O4—C101.436 (3)C12—C131.383 (3)
N1—C11.377 (3)C12—C171.386 (4)
N1—C51.382 (3)C13—C14'1.397 (4)
N1—H1N0.862 (10)C13—C141.397 (4)
C1—C21.355 (3)C13—H130.9300
C1—C61.502 (3)O5—C141.341 (4)
C2—C71.456 (3)O5—H5O0.827 (10)
C2—C31.523 (3)C14—C151.366 (4)
C3—C121.526 (3)C15—C161.367 (4)
C3—C41.525 (3)C15—H150.9300
C3—H30.9800C16—C171.385 (4)
C4—C51.350 (3)C16—H160.9300
C4—C91.465 (3)O5'—C16'1.255 (8)
C5—C111.505 (3)O5'—H5O'0.820 (11)
C6—H6A0.9600C14'—C15'1.366 (4)
C6—H6B0.9600C14'—H14'0.9300
C6—H6C0.9600C15'—C16'1.367 (4)
C8—H8A0.9600C15'—H15'0.9300
C8—H8B0.9600C16'—C171.385 (4)
C8—H8C0.9600C17—H170.9300
C10—H10A0.9600
C7—O2—C8116.6 (2)H10A—C10—H10B109.5
C9—O4—C10118.0 (2)O4—C10—H10C109.5
C1—N1—C5124.8 (2)H10A—C10—H10C109.5
C1—N1—H1N115.4 (18)H10B—C10—H10C109.5
C5—N1—H1N118.9 (18)C5—C11—H11A109.5
C2—C1—N1118.7 (2)C5—C11—H11B109.5
C2—C1—C6128.5 (2)H11A—C11—H11B109.5
N1—C1—C6112.8 (2)C5—C11—H11C109.5
C1—C2—C7125.5 (2)H11A—C11—H11C109.5
C1—C2—C3120.8 (2)H11B—C11—H11C109.5
C7—C2—C3113.5 (2)C13—C12—C17118.1 (2)
C2—C3—C12110.69 (19)C13—C12—C3121.0 (2)
C2—C3—C4111.33 (18)C17—C12—C3120.9 (2)
C12—C3—C4110.8 (2)C12—C13—C14'120.7 (3)
C2—C3—H3108.0C12—C13—C14120.7 (3)
C12—C3—H3108.0C12—C13—H13119.6
C4—C3—H3108.0C14'—C13—H13119.6
C5—C4—C9124.2 (2)C14—C13—H13119.6
C5—C4—C3121.0 (2)C14—O5—H5O109 (4)
C9—C4—C3114.7 (2)O5—C14—C15120.4 (3)
C4—C5—N1118.7 (2)O5—C14—C13119.2 (3)
C4—C5—C11128.9 (2)C15—C14—C13120.5 (3)
N1—C5—C11112.4 (2)C16—C15—C14118.9 (3)
C1—C6—H6A109.5C16—C15—H15120.5
C1—C6—H6B109.5C14—C15—H15120.5
H6A—C6—H6B109.5C15—C16—C17121.4 (3)
C1—C6—H6C109.5C15—C16—H16119.3
H6A—C6—H6C109.5C17—C16—H16119.3
H6B—C6—H6C109.5C16'—O5'—H5O'100 (8)
O1—C7—O2120.9 (2)C15'—C14'—C13120.5 (3)
O1—C7—C2123.2 (2)C15'—C14'—H14'119.8
O2—C7—C2115.9 (2)C13—C14'—H14'119.8
O2—C8—H8A109.5C16'—C15'—C14'118.9 (3)
O2—C8—H8B109.5C16'—C15'—H15'120.5
H8A—C8—H8B109.5C14'—C15'—H15'120.5
O2—C8—H8C109.5O5'—C16'—C15'115.5 (5)
H8A—C8—H8C109.5O5'—C16'—C17123.0 (5)
H8B—C8—H8C109.5C15'—C16'—C17121.4 (3)
O3—C9—O4121.8 (2)C16'—C17—C12120.3 (3)
O3—C9—C4123.7 (2)C16—C17—C12120.3 (3)
O4—C9—C4114.5 (2)C16'—C17—H17119.8
O4—C10—H10A109.5C16—C17—H17119.8
O4—C10—H10B109.5C12—C17—H17119.8
C5—N1—C1—C2−10.3 (4)C5—C4—C9—O3171.2 (3)
C5—N1—C1—C6169.9 (2)C3—C4—C9—O3−11.8 (4)
N1—C1—C2—C7177.5 (2)C5—C4—C9—O4−9.6 (4)
C6—C1—C2—C7−2.6 (4)C3—C4—C9—O4167.4 (2)
N1—C1—C2—C3−7.7 (4)C2—C3—C12—C13−134.6 (2)
C6—C1—C2—C3172.1 (2)C4—C3—C12—C13101.4 (3)
C1—C2—C3—C12−102.0 (3)C2—C3—C12—C1745.9 (3)
C7—C2—C3—C1273.3 (3)C4—C3—C12—C17−78.0 (3)
C1—C2—C3—C421.7 (3)C17—C12—C13—C14'0.1 (4)
C7—C2—C3—C4−163.0 (2)C3—C12—C13—C14'−179.4 (2)
C2—C3—C4—C5−20.8 (3)C17—C12—C13—C140.1 (4)
C12—C3—C4—C5102.9 (3)C3—C12—C13—C14−179.4 (2)
C2—C3—C4—C9162.1 (2)C12—C13—C14—O5178.1 (3)
C12—C3—C4—C9−74.3 (3)C12—C13—C14—C15−2.0 (4)
C9—C4—C5—N1−177.2 (2)O5—C14—C15—C16−177.6 (3)
C3—C4—C5—N15.9 (4)C13—C14—C15—C162.4 (4)
C9—C4—C5—C110.6 (4)C14—C15—C16—C17−1.0 (5)
C3—C4—C5—C11−176.2 (3)C12—C13—C14'—C15'−2.0 (4)
C1—N1—C5—C411.2 (4)C13—C14'—C15'—C16'2.4 (4)
C1—N1—C5—C11−167.0 (2)C14'—C15'—C16'—O5'175.2 (7)
C8—O2—C7—O1−0.2 (4)C14'—C15'—C16'—C17−1.0 (5)
C8—O2—C7—C2179.1 (3)O5'—C16'—C17—C12−176.8 (7)
C1—C2—C7—O1−174.1 (2)C15'—C16'—C17—C12−0.9 (4)
C3—C2—C7—O110.8 (3)C15—C16—C17—C12−0.9 (4)
C1—C2—C7—O26.6 (4)C13—C12—C17—C16'1.3 (4)
C3—C2—C7—O2−168.4 (2)C3—C12—C17—C16'−179.2 (2)
C10—O4—C9—O32.8 (4)C13—C12—C17—C161.3 (4)
C10—O4—C9—C4−176.3 (2)C3—C12—C17—C16−179.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1n···O1i0.862 (10)2.103 (14)2.960 (3)172.8 (19)
O5—H5o···O3ii0.827 (10)2.01 (5)2.828 (4)170 (6)
O5'—H5o'···O5ii0.820 (11)2.17 (12)2.778 (10)132 (1)

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5373).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (1998). SADABS Bruker AXS Inc., Maddison, Wisconsin, USA.
  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc 97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Rathore, R. S., Reddy, B. P., Vijayakumar, V., Ragavan, R. V. & Narasimhamurthy, T. (2009). Acta Cryst. B65, 375–381. [PubMed]
  • Reddy, P. B., Vijayakumar, V., Sarveswari, S., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o658–o659. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Westrip, S. P. (2010). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography