PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m364.
Published online 2010 March 6. doi:  10.1107/S1600536810007592
PMCID: PMC2983890

Bis(μ-diphenyl­arsine-κ2 As:As)bis­[tetra­carbonyl­tungsten(0)]

Abstract

The title compound, [W2(C12H10As)2(CO)8], features a diamond-shaped W2As2 core with a W—W distance of 3.0948 (7) Å. The coordination geometry for each W atom is based on a penta­gonal bipyramid within a As2C4W donor set, with carbonyl ligands defining the axial positions; the As atoms exist within distorted tetra­hedral C2W2 donor sets.

Related literature

For information on the preparation, from M(CO)6 and RE 2ER 2, and the IR spectra of [M 2(ER 2)2(CO)8] (M = Cr, Mo, or W; E = P or As; R = alkyl or aryl), see: Chatt & Thornton (1964 [triangle]). For other preparations and spectra of [W2(PPh2)2(CO)8], see: Shyu et al. (1987 [triangle]); Keiter & Madigan (1982 [triangle]); Keiter et al. (1989 [triangle]); Brown et al. (1995 [triangle]); Planinic & Matkovic-Calogovic (2001 [triangle]). For the crystal structure of [W2(PPh2)2(CO)8], see: Shyu et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m364-scheme1.jpg

Experimental

Crystal data

  • [W2(C12H10As)2(CO)8]
  • M r = 1050.02
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m364-efi1.jpg
  • a = 9.7052 (4) Å
  • b = 20.1288 (7) Å
  • c = 16.6450 (7) Å
  • β = 102.835 (2)°
  • V = 3170.4 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 9.37 mm−1
  • T = 120 K
  • 0.06 × 0.05 × 0.02 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.604, T max = 0.746
  • 25035 measured reflections
  • 5544 independent reflections
  • 4274 reflections with I > 2σ(I)
  • R int = 0.105

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.120
  • S = 1.62
  • 5544 reflections
  • 397 parameters
  • 192 restraints
  • H-atom parameters constrained
  • Δρmax = 2.56 e Å−3
  • Δρmin = −1.28 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810007592/hb5346sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007592/hb5346Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES and FAPEMIG (Brazil).

supplementary crystallographic information

Comment

The title compound, (I), was isolated from a reaction mixture of W(CO)6 and the arsinosugar derivative, 4,6-benzylidene-3-deoxy-3-diphenylarsino-α-D-altropyranoside, 1 (Brown et al., 1995), Fig. 1. The intention was to obtain a chiral tungsten complex, [W(CO)4(1)], but instead the species isolated indicated that the diphenylarsino fragment had been extracted from the chiral ligand with probable reformation of the epoxide reactant, 1, used in the preparation of 2 (Brown et al., 1995), Fig. 1.

More direct routes to [M2(ER2)2(CO)8] compounds (M = Cr, Mo, or W; R = P or As) are available (Chatt & Thornton, 1964; Shyu et al., 1987; Keiter & Madigan, 1982; Keiter et al., 1989), including for [W2(AsMe2)2(CO)8] (Chatt & Thornton, 1964). Planinic & Matkovic-Calogovic (2001) reported the formation of [M2(PPh2)2(CO)8] (M = Mo or W) from a reaction mixture containing M(CO)6 and 1,4,8,11-tetrakis(methyldiphenylphosphino)-1,4,8,11-tetraazacyclotetradecane, another example of an abstraction of a Ph2M fragment from an elaborate and potential ligand.

The molecular structure of (I), Fig. 2, is constructed about planar four-membered W2As2 metallacycle [mean deviation = 0.012 (1) Å]. Even though the W–As distances span a narrow range [2.5559 (13) – 2.5686 (13) Å], the core has the shape of a diamond as the angles subtended at the W atoms [105.58 (4) and 105.79 (4) °] are greater than those subtended at the As atoms [74.15 (3) and 74.45 (3) °]. Each W atom exists within a pentagonal bipyramidal geometry defined by a W atom, two As atoms, and four carbonyl ligands. In this description, carbonyl ligands occupy axial positions: the C2–W1–C4 and C5–W2–C7 axial angles are 177.3 (5) and 177.7 (5) °, respectively. The As atoms exists in distorted tetrahedral C2W2 geometries [range of angles: 74.15 (3) to 124.4 (4) °]. The W1–W2 distance in (I) of 3.0948 (7) Å is longer than the corresponding distance [3.0256 (4) Å] in the isomorphous phosphino derivative (Shyu et al., 1987).

Experimental

A solution of tungsten hexacarbonyl (0.32 g, 1 mmol) and 4,6-benzylidene-3-deoxy-3-diphenylarsino-α-D-altropyranoside (0.49 g, 1 mmol) (Brown et al., 1995) in THF (25 ml) was refluxed for 1 h and maintained at room temperature. Red plates of (I) formed slowly from this solution; m.pt. > 560 K. Found: C, 36.38; H, 2.27%;. C32H20As2O8W2 requires C, 36.60; H, 2.12%. IR (KBr) ν(CO) 2035(s), 1958(vs,br) cm-1.

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(parent atom). The carbon atoms were refined with the ISOR command in SHELXL-97 (Sheldrick, 2008) to restrain the displacement parameters to be approximately isotropic. The maximum and minimum residual electron density peaks of 1.11 and 1.28 e Å-3, respectively, were located 0.99 Å and 0.84 Å from the W1 and H31 atoms, respectively.

Figures

Fig. 1.
Reaction scheme leading to (I).
Fig. 2.
The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Crystal data

[W2(C12H10As)2(CO)8]F(000) = 1960
Mr = 1050.02Dx = 2.200 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 46502 reflections
a = 9.7052 (4) Åθ = 2.9–27.5°
b = 20.1288 (7) ŵ = 9.37 mm1
c = 16.6450 (7) ÅT = 120 K
β = 102.835 (2)°Plate, red
V = 3170.4 (2) Å30.06 × 0.05 × 0.02 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer5544 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode4274 reflections with I > 2σ(I)
10 cm confocal mirrorsRint = 0.105
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 2.9°
[var phi] and ω scansh = −11→10
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)k = −23→23
Tmin = 0.604, Tmax = 0.746l = −19→19
25035 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.62w = 1/[σ2(Fo2) + (0.0272P)2] where P = (Fo2 + 2Fc2)/3
5544 reflections(Δ/σ)max = 0.001
397 parametersΔρmax = 2.56 e Å3
192 restraintsΔρmin = −1.28 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
W10.79610 (5)0.22692 (2)0.67301 (3)0.02265 (16)
W20.64555 (5)0.17590 (2)0.80661 (3)0.02228 (16)
As10.82208 (13)0.11196 (6)0.74172 (8)0.0232 (3)
As20.62376 (13)0.29106 (6)0.74031 (8)0.0232 (3)
O11.0294 (10)0.1749 (5)0.5819 (6)0.044 (3)
O20.5631 (9)0.1541 (4)0.5380 (5)0.030 (2)
O30.7593 (11)0.3558 (5)0.5629 (6)0.050 (3)
O41.0392 (10)0.2917 (5)0.8121 (6)0.044 (3)
O50.3671 (10)0.1453 (4)0.6717 (6)0.034 (2)
O60.4540 (11)0.2428 (5)0.9133 (6)0.049 (3)
O70.9180 (10)0.2103 (4)0.9456 (6)0.039 (2)
O80.6112 (10)0.0395 (5)0.8927 (7)0.048 (3)
C10.9463 (14)0.1950 (6)0.6147 (8)0.031 (3)
C20.6436 (13)0.1799 (6)0.5857 (8)0.022 (3)
C30.7752 (14)0.3102 (7)0.6025 (9)0.033 (3)
C40.9516 (15)0.2696 (6)0.7624 (8)0.031 (3)
C50.4670 (14)0.1558 (6)0.7184 (8)0.026 (3)
C60.5239 (13)0.2183 (6)0.8732 (8)0.027 (3)
C70.8194 (15)0.1994 (6)0.8951 (8)0.028 (3)
C80.6259 (14)0.0879 (7)0.8622 (8)0.032 (3)
C90.7768 (13)0.0330 (6)0.6756 (8)0.025 (3)
C100.8833 (14)−0.0035 (6)0.6561 (8)0.027 (3)
H100.97890.00900.67680.032*
C110.8508 (13)−0.0599 (5)0.6048 (7)0.023 (3)
H110.9251−0.08550.59190.028*
C120.7164 (14)−0.0775 (6)0.5744 (8)0.031 (3)
H120.6961−0.11620.54120.037*
C130.6057 (13)−0.0396 (6)0.5912 (8)0.027 (3)
H130.5103−0.05120.56790.032*
C140.6369 (13)0.0151 (5)0.6421 (7)0.023 (3)
H140.56220.04090.65440.027*
C150.9982 (12)0.0849 (5)0.8157 (7)0.020 (3)
C161.1266 (13)0.1157 (6)0.8160 (8)0.031 (3)
H161.13070.15130.77910.037*
C171.2498 (15)0.0944 (7)0.8707 (9)0.037 (3)
H171.33730.11600.87190.044*
C181.2434 (13)0.0410 (6)0.9237 (8)0.028 (3)
H181.32700.02550.95990.034*
C191.1158 (14)0.0110 (6)0.9231 (8)0.030 (3)
H191.1110−0.02470.95970.036*
C200.9946 (14)0.0328 (6)0.8693 (8)0.027 (3)
H200.90710.01160.86920.032*
C210.6862 (13)0.3708 (6)0.8044 (7)0.024 (3)
C220.6774 (14)0.4307 (6)0.7634 (8)0.032 (3)
H220.64130.43180.70550.038*
C230.7196 (13)0.4886 (6)0.8045 (8)0.031 (3)
H230.71340.52950.77540.037*
C240.7724 (14)0.4870 (6)0.8903 (8)0.033 (3)
H240.79930.52700.91990.039*
C250.7847 (13)0.4280 (6)0.9309 (8)0.025 (3)
H250.82230.42620.98860.031*
C260.7420 (13)0.3707 (7)0.8871 (8)0.033 (3)
H260.75190.32950.91570.040*
C270.4386 (13)0.3185 (6)0.6796 (8)0.026 (3)
C280.3853 (14)0.3008 (6)0.5980 (8)0.033 (3)
H280.44330.27720.56870.040*
C290.2473 (15)0.3172 (6)0.5588 (9)0.040 (4)
H290.21090.30440.50320.048*
C300.1641 (14)0.3521 (6)0.6008 (8)0.033 (3)
H300.07060.36420.57380.039*
C310.2163 (13)0.3700 (6)0.6833 (8)0.028 (3)
H310.15810.39380.71240.034*
C320.3506 (13)0.3532 (6)0.7218 (8)0.029 (3)
H320.38540.36510.77780.034*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
W10.0259 (3)0.0199 (3)0.0226 (3)−0.0006 (2)0.0062 (2)0.0000 (2)
W20.0227 (3)0.0228 (3)0.0208 (3)−0.0012 (2)0.0038 (2)0.0014 (2)
As10.0220 (7)0.0211 (6)0.0251 (8)−0.0009 (5)0.0022 (6)0.0006 (5)
As20.0273 (8)0.0216 (6)0.0210 (7)−0.0009 (5)0.0058 (6)−0.0012 (5)
O10.041 (6)0.052 (6)0.045 (6)0.010 (5)0.024 (5)−0.010 (5)
O20.033 (6)0.030 (5)0.022 (5)−0.004 (4)−0.005 (4)−0.005 (4)
O30.070 (8)0.032 (6)0.045 (7)−0.004 (5)0.011 (6)0.017 (5)
O40.035 (6)0.039 (6)0.058 (7)−0.012 (5)0.006 (5)−0.016 (5)
O50.034 (6)0.025 (5)0.038 (6)0.000 (4)0.003 (5)0.000 (4)
O60.058 (7)0.047 (6)0.047 (7)−0.006 (5)0.026 (6)−0.007 (5)
O70.043 (6)0.040 (5)0.031 (6)0.002 (5)0.003 (5)−0.004 (4)
O80.044 (6)0.033 (5)0.066 (8)0.001 (5)0.010 (6)0.030 (5)
C10.030 (5)0.034 (5)0.026 (5)0.002 (4)0.002 (4)−0.002 (4)
C20.023 (5)0.022 (4)0.023 (5)0.001 (4)0.011 (4)−0.001 (4)
C30.035 (5)0.033 (5)0.033 (5)0.000 (4)0.012 (4)−0.006 (4)
C40.033 (5)0.029 (5)0.030 (5)−0.008 (4)0.006 (4)−0.001 (4)
C50.025 (5)0.022 (4)0.029 (5)0.006 (4)0.000 (4)0.002 (4)
C60.025 (5)0.031 (5)0.026 (5)−0.008 (4)0.006 (4)0.003 (4)
C70.027 (5)0.030 (5)0.026 (5)0.003 (4)0.002 (4)0.003 (4)
C80.031 (5)0.032 (5)0.032 (5)−0.004 (4)0.004 (4)0.002 (4)
C90.030 (5)0.022 (4)0.025 (5)−0.001 (4)0.005 (4)0.000 (4)
C100.025 (5)0.024 (4)0.029 (5)−0.001 (4)0.001 (4)−0.001 (4)
C110.024 (5)0.020 (4)0.026 (5)0.008 (4)0.005 (4)0.001 (4)
C120.033 (5)0.027 (5)0.035 (5)0.000 (4)0.010 (4)−0.004 (4)
C130.022 (5)0.029 (5)0.030 (5)−0.003 (4)0.007 (4)−0.003 (4)
C140.028 (5)0.019 (4)0.020 (4)0.001 (4)0.004 (4)−0.001 (4)
C150.017 (4)0.020 (4)0.021 (4)−0.002 (4)0.001 (4)−0.002 (4)
C160.030 (5)0.028 (5)0.035 (5)0.000 (4)0.006 (4)0.003 (4)
C170.035 (5)0.039 (5)0.036 (5)−0.006 (4)0.007 (4)−0.004 (4)
C180.024 (5)0.031 (5)0.026 (5)0.008 (4)−0.003 (4)−0.002 (4)
C190.034 (5)0.030 (5)0.027 (5)0.001 (4)0.005 (4)0.003 (4)
C200.026 (5)0.028 (5)0.027 (5)−0.001 (4)0.009 (4)0.001 (4)
C210.024 (5)0.023 (4)0.026 (5)−0.008 (4)0.007 (4)−0.003 (4)
C220.032 (5)0.035 (5)0.030 (5)−0.001 (4)0.007 (4)−0.003 (4)
C230.029 (5)0.030 (5)0.034 (5)0.001 (4)0.010 (4)0.002 (4)
C240.033 (5)0.031 (5)0.037 (5)0.002 (4)0.013 (4)−0.006 (4)
C250.027 (5)0.029 (4)0.020 (5)0.000 (4)0.005 (4)−0.005 (4)
C260.029 (5)0.034 (5)0.035 (5)0.001 (4)0.005 (4)0.003 (4)
C270.023 (5)0.022 (4)0.030 (5)0.003 (4)0.002 (4)0.006 (4)
C280.033 (5)0.036 (5)0.032 (5)0.001 (4)0.010 (4)0.002 (4)
C290.041 (5)0.035 (5)0.043 (5)0.003 (4)0.005 (4)−0.001 (4)
C300.031 (5)0.032 (5)0.033 (5)0.004 (4)0.003 (4)0.005 (4)
C310.024 (5)0.026 (4)0.032 (5)0.002 (4)0.002 (4)0.002 (4)
C320.031 (5)0.031 (5)0.024 (5)−0.003 (4)0.005 (4)−0.004 (4)

Geometric parameters (Å, °)

W1—C12.027 (13)C14—H140.9500
W1—C32.031 (14)C15—C201.382 (16)
W1—C42.057 (15)C15—C161.392 (16)
W1—C22.061 (14)C16—C171.400 (18)
W1—As22.5597 (12)C16—H160.9500
W1—As12.5686 (13)C17—C181.399 (18)
W1—W23.0948 (7)C17—H170.9500
W2—C61.983 (13)C18—C191.376 (17)
W2—C82.027 (13)C18—H180.9500
W2—C72.033 (15)C19—C201.382 (18)
W2—C52.048 (15)C19—H190.9500
W2—As22.5559 (13)C20—H200.9500
W2—As12.5652 (13)C21—C261.362 (18)
As1—C91.928 (12)C21—C221.380 (17)
As1—C151.949 (12)C22—C231.367 (17)
As2—C271.936 (13)C22—H220.9500
As2—C211.948 (12)C23—C241.407 (18)
O1—C11.143 (14)C23—H230.9500
O2—C21.110 (14)C24—C251.358 (17)
O3—C31.120 (15)C24—H240.9500
O4—C41.136 (15)C25—C261.377 (17)
O5—C51.120 (14)C25—H250.9500
O6—C61.162 (14)C26—H260.9500
O7—C71.146 (15)C27—C321.405 (16)
O8—C81.122 (15)C27—C281.389 (18)
C9—C101.364 (16)C28—C291.393 (19)
C9—C141.396 (17)C28—H280.9500
C10—C111.413 (16)C29—C301.373 (18)
C10—H100.9500C29—H290.9500
C11—C121.339 (17)C30—C311.401 (18)
C11—H110.9500C30—H300.9500
C12—C131.395 (16)C31—C321.361 (17)
C12—H120.9500C31—H310.9500
C13—C141.381 (16)C32—H320.9500
C13—H130.9500
C1—W1—C388.6 (5)C11—C10—H10120.1
C1—W1—C489.3 (5)C12—C11—C10120.6 (11)
C3—W1—C492.1 (5)C12—C11—H11119.7
C1—W1—C289.8 (5)C10—C11—H11119.7
C3—W1—C290.5 (5)C11—C12—C13120.5 (12)
C4—W1—C2177.3 (5)C11—C12—H12119.7
C1—W1—As2168.2 (4)C13—C12—H12119.7
C3—W1—As281.1 (3)C14—C13—C12119.0 (12)
C4—W1—As285.3 (4)C14—C13—H13120.5
C2—W1—As296.0 (3)C12—C13—H13120.5
C1—W1—As185.3 (4)C13—C14—C9120.8 (11)
C3—W1—As1171.3 (4)C13—C14—H14119.6
C4—W1—As194.0 (4)C9—C14—H14119.6
C2—W1—As183.4 (3)C20—C15—C16119.1 (11)
As2—W1—As1105.58 (4)C20—C15—As1118.4 (9)
C1—W1—W2138.1 (4)C16—C15—As1122.5 (9)
C3—W1—W2133.4 (3)C15—C16—C17120.0 (12)
C4—W1—W290.4 (3)C15—C16—H16120.0
C2—W1—W288.6 (3)C17—C16—H16120.0
As2—W1—W252.72 (3)C16—C17—C18119.6 (12)
As1—W1—W252.88 (3)C16—C17—H17120.2
C6—W2—C889.6 (5)C18—C17—H17120.2
C6—W2—C789.8 (5)C19—C18—C17119.9 (12)
C8—W2—C791.1 (5)C19—C18—H18120.0
C6—W2—C588.4 (5)C17—C18—H18120.0
C8—W2—C590.2 (5)C18—C19—C20120.0 (12)
C7—W2—C5177.7 (5)C18—C19—H19120.0
C6—W2—As281.3 (3)C20—C19—H19120.0
C8—W2—As2169.3 (4)C15—C20—C19121.3 (12)
C7—W2—As294.4 (3)C15—C20—H20119.3
C5—W2—As283.9 (3)C19—C20—H20119.3
C6—W2—As1171.0 (4)C26—C21—C22117.9 (12)
C8—W2—As183.8 (4)C26—C21—As2123.9 (9)
C7—W2—As184.1 (3)C22—C21—As2118.2 (9)
C5—W2—As197.9 (3)C23—C22—C21121.2 (13)
As2—W2—As1105.79 (4)C23—C22—H22119.4
C6—W2—W1133.9 (3)C21—C22—H22119.4
C8—W2—W1136.5 (4)C24—C23—C22119.3 (12)
C7—W2—W189.7 (3)C24—C23—H23120.3
C5—W2—W190.6 (4)C22—C23—H23120.3
As2—W2—W152.83 (3)C23—C24—C25119.8 (12)
As1—W2—W152.98 (3)C23—C24—H24120.1
C9—As1—C15100.8 (5)C25—C24—H24120.1
C9—As1—W2124.4 (4)C26—C25—C24119.1 (12)
C15—As1—W2116.6 (3)C26—C25—H25120.5
C9—As1—W1120.1 (4)C24—C25—H25120.5
C15—As1—W1121.2 (3)C25—C26—C21122.6 (12)
W2—As1—W174.15 (3)C25—C26—H26118.7
C27—As2—C21101.0 (5)C21—C26—H26118.7
C27—As2—W2117.5 (3)C32—C27—C28118.7 (12)
C21—As2—W2121.7 (4)C32—C27—As2118.5 (10)
C27—As2—W1122.4 (4)C28—C27—As2122.6 (9)
C21—As2—W1120.1 (3)C29—C28—C27120.5 (12)
W2—As2—W174.45 (3)C29—C28—H28119.7
O1—C1—W1177.7 (11)C27—C28—H28119.7
O2—C2—W1178.9 (10)C30—C29—C28119.7 (14)
O3—C3—W1177.8 (13)C30—C29—H29120.1
O4—C4—W1178.3 (12)C28—C29—H29120.1
O5—C5—W2178.0 (11)C29—C30—C31120.4 (13)
O6—C6—W2178.9 (12)C29—C30—H30119.8
O7—C7—W2177.6 (11)C31—C30—H30119.8
O8—C8—W2178.1 (12)C32—C31—C30119.7 (12)
C10—C9—C14119.1 (11)C32—C31—H31120.1
C10—C9—As1119.4 (10)C30—C31—H31120.1
C14—C9—As1121.3 (9)C31—C32—C27120.9 (12)
C9—C10—C11119.8 (12)C31—C32—H32119.5
C9—C10—H10120.1C27—C32—H32119.5
C1—W1—W2—C6166.9 (8)W1—W2—As2—C21−116.1 (4)
C3—W1—W2—C6−15.7 (8)C6—W2—As2—W1175.4 (4)
C4—W1—W2—C677.5 (6)C8—W2—As2—W1−153 (2)
C2—W1—W2—C6−105.0 (6)C7—W2—As2—W186.3 (3)
As2—W1—W2—C6−6.4 (5)C5—W2—As2—W1−95.3 (3)
As1—W1—W2—C6172.3 (5)As1—W2—As2—W11.14 (5)
C1—W1—W2—C8−13.9 (8)C1—W1—As2—C2789.4 (19)
C3—W1—W2—C8163.5 (8)C3—W1—As2—C2760.1 (6)
C4—W1—W2—C8−103.3 (7)C4—W1—As2—C27152.9 (5)
C2—W1—W2—C874.2 (6)C2—W1—As2—C27−29.4 (5)
As2—W1—W2—C8172.8 (6)As1—W1—As2—C27−114.2 (4)
As1—W1—W2—C8−8.5 (6)W2—W1—As2—C27−113.0 (4)
C1—W1—W2—C777.5 (7)C1—W1—As2—C21−39.6 (19)
C3—W1—W2—C7−105.1 (6)C3—W1—As2—C21−68.9 (6)
C4—W1—W2—C7−11.9 (5)C4—W1—As2—C2123.9 (6)
C2—W1—W2—C7165.6 (5)C2—W1—As2—C21−158.4 (5)
As2—W1—W2—C7−95.8 (3)As1—W1—As2—C21116.8 (4)
As1—W1—W2—C782.8 (3)W2—W1—As2—C21118.0 (4)
C1—W1—W2—C5−104.8 (6)C1—W1—As2—W2−157.6 (19)
C3—W1—W2—C572.6 (6)C3—W1—As2—W2173.1 (4)
C4—W1—W2—C5165.8 (5)C4—W1—As2—W2−94.0 (3)
C2—W1—W2—C5−16.7 (4)C2—W1—As2—W283.6 (3)
As2—W1—W2—C581.9 (3)As1—W1—As2—W2−1.13 (5)
As1—W1—W2—C5−99.4 (3)C15—As1—C9—C10−35.6 (11)
C1—W1—W2—As2173.3 (6)W2—As1—C9—C10−168.7 (8)
C3—W1—W2—As2−9.3 (5)W1—As1—C9—C10100.5 (10)
C4—W1—W2—As283.8 (4)C15—As1—C9—C14149.3 (10)
C2—W1—W2—As2−98.6 (3)W2—As1—C9—C1416.2 (12)
As1—W1—W2—As2178.63 (6)W1—As1—C9—C14−74.6 (10)
C1—W1—W2—As1−5.4 (6)C14—C9—C10—C11−2.2 (18)
C3—W1—W2—As1172.0 (5)As1—C9—C10—C11−177.4 (9)
C4—W1—W2—As1−94.8 (4)C9—C10—C11—C120.7 (19)
C2—W1—W2—As182.8 (3)C10—C11—C12—C131.6 (19)
As2—W1—W2—As1−178.63 (6)C11—C12—C13—C14−2.4 (18)
C6—W2—As1—C9102 (2)C12—C13—C14—C90.9 (18)
C8—W2—As1—C958.2 (6)C10—C9—C14—C131.4 (18)
C7—W2—As1—C9150.0 (6)As1—C9—C14—C13176.5 (9)
C5—W2—As1—C9−31.2 (6)C9—As1—C15—C20−63.9 (10)
As2—W2—As1—C9−117.0 (4)W2—As1—C15—C2073.8 (10)
W1—W2—As1—C9−115.9 (4)W1—As1—C15—C20160.7 (8)
C6—W2—As1—C15−24 (2)C9—As1—C15—C16115.7 (10)
C8—W2—As1—C15−68.5 (5)W2—As1—C15—C16−106.6 (10)
C7—W2—As1—C1523.3 (5)W1—As1—C15—C16−19.7 (11)
C5—W2—As1—C15−157.8 (5)C20—C15—C16—C17−0.6 (18)
As2—W2—As1—C15116.3 (4)As1—C15—C16—C17179.8 (9)
W1—W2—As1—C15117.4 (4)C15—C16—C17—C181.4 (19)
C6—W2—As1—W1−142 (2)C16—C17—C18—C19−1.6 (19)
C8—W2—As1—W1174.1 (4)C17—C18—C19—C201.1 (18)
C7—W2—As1—W1−94.1 (3)C16—C15—C20—C190.1 (18)
C5—W2—As1—W184.7 (3)As1—C15—C20—C19179.7 (9)
As2—W2—As1—W1−1.14 (5)C18—C19—C20—C15−0.4 (19)
C1—W1—As1—C9−62.6 (6)C27—As2—C21—C26131.1 (11)
C3—W1—As1—C9−17 (3)W2—As2—C21—C26−1.2 (12)
C4—W1—As1—C9−151.6 (6)W1—As2—C21—C26−90.8 (11)
C2—W1—As1—C927.8 (5)C27—As2—C21—C22−50.9 (10)
As2—W1—As1—C9122.1 (4)W2—As2—C21—C22176.8 (8)
W2—W1—As1—C9121.0 (4)W1—As2—C21—C2287.2 (10)
C1—W1—As1—C1564.5 (5)C26—C21—C22—C23−1.7 (18)
C3—W1—As1—C15110 (3)As2—C21—C22—C23−179.9 (9)
C4—W1—As1—C15−24.5 (5)C21—C22—C23—C24−0.3 (19)
C2—W1—As1—C15154.9 (5)C22—C23—C24—C252.0 (19)
As2—W1—As1—C15−110.7 (4)C23—C24—C25—C26−1.5 (18)
W2—W1—As1—C15−111.9 (4)C24—C25—C26—C21−0.7 (19)
C1—W1—As1—W2176.4 (4)C22—C21—C26—C252.3 (19)
C3—W1—As1—W2−138 (3)As2—C21—C26—C25−179.7 (9)
C4—W1—As1—W287.4 (4)C21—As2—C27—C32−43.6 (10)
C2—W1—As1—W2−93.2 (3)W2—As2—C27—C3291.2 (9)
As2—W1—As1—W21.13 (5)W1—As2—C27—C32179.6 (8)
C6—W2—As2—C27−65.8 (6)C21—As2—C27—C28141.5 (10)
C8—W2—As2—C27−34 (2)W2—As2—C27—C28−83.7 (10)
C7—W2—As2—C27−154.8 (5)W1—As2—C27—C284.8 (12)
C5—W2—As2—C2723.5 (5)C32—C27—C28—C290.1 (18)
As1—W2—As2—C27120.0 (4)As2—C27—C28—C29174.9 (10)
W1—W2—As2—C27118.9 (4)C27—C28—C29—C301.0 (19)
C6—W2—As2—C2159.3 (6)C28—C29—C30—C31−1.3 (19)
C8—W2—As2—C2191 (2)C29—C30—C31—C320.6 (19)
C7—W2—As2—C21−29.8 (5)C30—C31—C32—C270.5 (18)
C5—W2—As2—C21148.6 (5)C28—C27—C32—C31−0.8 (18)
As1—W2—As2—C21−114.9 (4)As2—C27—C32—C31−175.9 (9)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5346).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Brown, M. A., Howie, R. A., Wardell, J. L., Cox, P. J. & Melvin, O. A. (1995). J. Organomet. Chem 493, 199–203.
  • Chatt, J. & Thornton, D. A. (1964). J. Chem. Soc pp. 1005–1011.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Keiter, R. L., Keiter, E. A., Mittelberg, K. N., Martin, J. S., Meyers, V. M. & Wang, J.-G. (1989). Organometallics, 8, 1399–1403.
  • Keiter, R. L. & Madigan, M. J. (1982). Organometallics, 1, 409–411.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Planinic, P. & Matkovic-Calogovic, D. (2001). Struct. Chem 12, 439–444.
  • Sheldrick, G. M. (2007). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shyu, S.-G., Calligaris, M., Nardin, G. & Wojcicki, A. (1987). J. Am. Chem. Soc 109, 3617–3625.
  • Westrip, S. P. (2010). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography