PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o961–o962.
Published online 2010 March 27. doi:  10.1107/S1600536810010512
PMCID: PMC2983889

Diethyl 2-{(dibenzyl­amino)[4-(trifluoro­meth­yl)phen­yl]meth­yl}malonate

Abstract

The asymmetric unit of the title compound, C29H30F3NO4, contains two independent mol­ecules. In each independent mol­ecule, one of two terminal ethyl groups is disordered over two conformations: the occupancies of major components were fixed at 0.53 and 0.64 in the two mol­ecules. In the crystal structure, weak inter­molecular C—H(...)O hydrogen bonds link mol­ecules into chains propagating along [10An external file that holds a picture, illustration, etc.
Object name is e-66-0o961-efi1.jpg].

Related literature

For related compounds exhibitinging biological activity, see: Dayam et al. (2007 [triangle]); Patil et al. (2007 [triangle]); Ramkumar et al. (2008 [triangle]); Sechi, Carta et al. (2009 [triangle]); Sechi, Rizzi et al. (2009 [triangle]); Zeng, Zhang et al. (2008 [triangle]); Zeng, Jiang et al. (2008 [triangle]). For details of the synthesis, see: Pommier & Neamati (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o961-scheme1.jpg

Experimental

Crystal data

  • C29H30F3NO4
  • M r = 513.54
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o961-efi2.jpg
  • a = 13.4131 (3) Å
  • b = 23.6608 (5) Å
  • c = 17.3769 (3) Å
  • β = 96.826 (1)°
  • V = 5475.72 (19) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 296 K
  • 0.43 × 0.25 × 0.17 mm

Data collection

  • Bruker APEXII CCD detector diffractometer
  • 74220 measured reflections
  • 10790 independent reflections
  • 6912 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.184
  • S = 1.02
  • 10790 reflections
  • 709 parameters
  • 10 restraints
  • H-atom parameters constrained
  • Δρmax = 0.51 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810010512/cv2702sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010512/cv2702Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported in the framework of Project PGR-UMP-BH-2005 by the Centre National de Recherche Scientifique, CNRS, France, and the Centre National pour la Recherche Scientifique et Technique, CNRST, Morocco.

supplementary crystallographic information

Comment

The rational design of new HIV-1 Integrase (H—I) inhibitors, validated target for chemotherapeutic intervention (Dayam et al., 2007), is fundamentally based on intermolecular coordination between H—I / chemical inhibitor / metals (Mg+2 and Mn+2, co-factors of the enzyme) leading to formation of bimetallic complexes (Zeng, Zhang et al., 2008; Sechi, Carta et al., 2009). Thereby, several bimetallic complexes, in many cases exploring the well-known polydentate ligands, appear in this scenario as the most promising concept to employ in either enzyme / drug interaction or electron transfer process involving the biological oxygen transfer (Sechi, Rizzi et al., 2009 ; Ramkumar et al., 2008). Another exciting example of application for such polydentate ligand involves the synergic water activation, that occurs via so-called "remote metallic atoms". Such organometallic compounds are structurally deemed to promote or block the H—I activity (Zeng, Jiang et al., 2008). These explanations clearly demonstrate that polydentate ligands are of specific interest in the field of bioorganometallic chemistry (Patil et al., 2007; Pommier & Neamati, 2006).

We have undertaken the X-ray diffraction study of the title compound, in order to understand the molecular features which stabilize its conformation. The asymmetric unit contains two crystallographically independent molecules. Each molecule contains three aromatic rings (Fig. 1). The difference between the two molecules lies in the orientations of these three rings and carbonyl groups as shown in the fitting drawing (Fig. 2) obtained with PLATON (Spek, 2003). Thus in the first molecule (C11 to C146), the dihedral angles between the planes of benzene rings are: (C111–C116)/(C121–C126) = 75.41 (13)°, (C121–C126)/(C131–C136) = 75.94 (13)° and (C111–C116)/(C131–C136) = 22.36 (14)°. Whereas in the second molecule (C21 to C246), equivalent angles have as values 11.90 (15)°, 73.17 (17)° and 83.67 (15)°, respectively.

The planes of the two carbonyl groups (O11,O12,C141) and (O13,O14,C142) are twisted by a dihedral angles of 18.4 (4)° and 88.9 (4)°, respectively, with respect to the (C11,C14,N1) plane. In the second independent molecule, the dihedral angles between the two carbonyls (O21,O22,C241), (O23,O24,C242) and the (C21,C24,N2) plane are 25.9 (4)°, 87.1 (4)°, respectively. The angles between the planes of the two sites of disordered ethyl groups are 83.9 (15)° and 33.0 (2)° in the two molecules of the asymmetric unit.

In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) link molecules into chains propagated along [10-1].

Experimental

Synthesis of: 2-(4-trifloromethyl-benzylidene)-malonic acid diethyl ester]: To a solution of ethyl malonate (15 g, 93 mmol) in 40 ml of ethanol, were added the respective aldehyde (100 mmol), 1.5 ml of piperidine and 1 ml of glacial acetic acid. Then the mixture was stirred at refluxing temperature of ethanol for 12 h, until thin-layer chromatography indicated the complete consumption of the starting material. After removing solvent, the crude product was washed with a saturated solution of sodium bisulfite (20 ml). The product was extracted by diethyl ether (2x20 ml), dried with sodium sulphate and evaporated to give the respective pure oil.

To a solution of the 2-(4-trifloromethyl-benzylidene)-malonic acid diethyl ester (5 mmol) in water (25 ml) was added the dibenzylamine (6 mmol) in the presence of Acetic acid (0.1% mol) and the mixture and the stirring was continued at room temperature until the complete consume of the starting material (Pommier & Neamati, 2006).

After removing solvent, the crude products were dissolved in diethyl ether (2x40 ml) and washed with water until the pH became neutral. The organic solvent was dried with sodium sulphate and then evaporated to give the respective pure compounds as white solids. The residue was purified by recrystallization from a mixture ether/hexane (1:1) to give white solid in 96% yield.

Colourless crystals. 96% yield. Rf = 0.67 (ether/hexane: 1/1). M.p. = 102-104°C.

The structure of the title compound was deduced from 1H and 13C NMR, elemental analyses and fully confirmed by single-Crystal X-ray structure.

IR (KBr ) ν cm-1: 2841/2902 (CH); 1731(CO); 1585/1618 (C=C); 1257/1306(C—O); 1164.

RMN 1H (250 MHz, CDCl3) δ (ppm): 7,25-7,72 (m, 4H, aromat, Ph—CF3, 3J = 8,1 Hz);7.35 (m,10H, aromat, Ph ,3J = 6 Hz); 4.63 (d,1H, CF3PhC3H, 3J= 12 Hz); 4.4 (d, 1H, -C2H(CO2Et)2, 3J = 12 Hz); 3.0(d,1H, 2CH-Ph, 3J= 13,50 Hz ); 3.9 (d,1H, 2CHPh, 3J= 13.62 Hz ); 4.0 (dq, 2 HAB, OCH2CH3, JAB= 14,28 Hz, 3J = 7.15 Hz); 4.20/ 4.40 (dq, 2 HAB, OCH2CH3, JAB = 14.28 Hz, 3J = 7.15 Hz); 1.28 (t, 3H, OCH2CH3 , 3J = 7.11 Hz); 1,0 (t, 3H, O CH2CH3, 3J = 7,11 Hz). RMN 13C (250 MHz, CDCl3) δ (ppm): 166.66/ 167.14 (2CO); 138.53 (Cquat, C—CF3—Ph); 138,09 (Cquat, Ph, para/ CF3); 128.17/125.01 ( tert, aromt); 130.22/129.43 (Cquat, 2 C/ arm, 2Ph); 61.78/ 61.37 (Csec, 2CH2, ester); 61.28 (Ctert, C3HPhCF3); 55,11 (Ctert, C2H(CO2Et)2); 53.15/ 53.94 (Csec, 2CH2-Ph); 13.67 (C, OCH2CH3, ester); 13.91 (C, OCH2CH3, ester).

MS (IE) Calcd for [M]+ : 513.54, [M+H]+ = 514, [M—CH(CO2Et)2]+= 354 (100%).

Elemental analysis for C29H30F3NO4 Calcd (Found): C 67.82 (67.79), H 5.89 (5.87), N (2.73 (2.72).

The purity of the compound was checked by determining its melting point (104-106°C). Suitable single crystal of malonate derivative (I) was obtained by recrystallization from ethanol. A white-transparent crystal of C29H30F3NO4 having approximate dimensions of 0.43 × 0.25 × 0.17 mm was mounted on a glass fibre. All measurements were made in the [var phi] and ω scans technique on a CCD X8 Bruker diffractometer with graphite monochromatized MoKα radiation at room temperature (296 (2) K).

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene) and 0.98 Å (methine) with Uiso(H) = 1.2 or 1.5 Ueq(C).

In asymmetric unit, two (of four) ethyl fragments were treated as disordered, and the occupancies of the major parts were initially refined, and then fixed to 0.53 and 0.64, respectively, in the final cycles of the refinement. Similarity restraints with tolerance s.u.s of 0.02 Å were applied to the chemically equivalent bond lengths and angles involving all disordered atoms. Refinement were carried out using the DFIX, SAME and PART instruction within SHELXL97 (Sheldrick, 2008).

Figures

Fig. 1.
Two independent molecules of the title compound showing the atom-labelling scheme and 30% probability displacement ellipsoids. Only major parts of disordered ethyl groups are shown.
Fig. 2.
View showing the fitting of two independent molecules. Only major parts of disordered ethyl groups are shown.

Crystal data

C29H30F3NO4F(000) = 2160
Mr = 513.54Dx = 1.246 Mg m3
Monoclinic, P21/cMelting point: 375 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.4131 (3) ÅCell parameters from 5382 reflections
b = 23.6608 (5) Åθ = 2.5–25.4°
c = 17.3769 (3) ŵ = 0.10 mm1
β = 96.826 (1)°T = 296 K
V = 5475.72 (19) Å3Block, colourless
Z = 80.43 × 0.25 × 0.17 mm

Data collection

Bruker APEXII CCD detector diffractometer6912 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
graphiteθmax = 26.0°, θmin = 2.7°
ω and [var phi] scansh = −16→12
74220 measured reflectionsk = −29→29
10790 independent reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0764P)2 + 3.875P] where P = (Fo2 + 2Fc2)/3
10790 reflections(Δ/σ)max = 0.011
709 parametersΔρmax = 0.51 e Å3
10 restraintsΔρmin = −0.41 e Å3

Special details

Experimental. The data collection nominally covered a sphere of reciprocal space, by a combination of five sets of exposures; each set had a different [var phi] angle for the crystal and each exposure covered 0.5° in ω and 30 seconds in time. The crystal-to-detector distance was 37.5 mm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
N10.21351 (13)0.55799 (8)0.47972 (11)0.0377 (5)
O120.13397 (17)0.71894 (10)0.37972 (14)0.0757 (6)
O130.20149 (13)0.68514 (8)0.56473 (11)0.0531 (5)
O140.08360 (14)0.62505 (9)0.59701 (11)0.0610 (5)
F110.0021 (2)0.5779 (2)0.07329 (13)0.206 (2)
F120.0673 (3)0.49891 (18)0.09034 (15)0.1527 (13)
F130.1539 (2)0.56371 (14)0.05959 (12)0.1232 (10)
C110.18374 (16)0.60674 (11)0.42886 (13)0.0393 (5)
H110.24260.63150.43140.047*
C120.13542 (17)0.51487 (11)0.48334 (14)0.0420 (6)
H12A0.12680.49380.43510.050*
H12B0.07220.53320.48960.050*
C130.30752 (17)0.53227 (11)0.46200 (15)0.0420 (6)
H13A0.30200.52410.40690.050*
H13B0.31700.49670.48950.050*
C140.10159 (17)0.64086 (11)0.46267 (15)0.0430 (6)
H140.03880.61940.45350.052*
C1110.15593 (17)0.59254 (11)0.34376 (14)0.0421 (6)
C1120.06123 (18)0.57289 (12)0.31431 (15)0.0500 (7)
H1120.01250.56790.34760.060*
C1130.0385 (2)0.56065 (14)0.23677 (17)0.0610 (8)
H113−0.02540.54790.21810.073*
C1140.1102 (2)0.56730 (14)0.18657 (16)0.0592 (8)
C1150.2050 (2)0.58634 (14)0.21465 (16)0.0585 (8)
H1150.25370.59070.18130.070*
C1160.22705 (19)0.59887 (12)0.29234 (15)0.0491 (6)
H1160.29090.61180.31070.059*
C1170.0831 (3)0.5552 (2)0.1027 (2)0.0897 (13)
C1210.16261 (17)0.47463 (11)0.54984 (14)0.0434 (6)
C1220.15670 (18)0.41678 (12)0.53886 (16)0.0490 (6)
H1220.13590.40240.48980.059*
C1230.18166 (19)0.37990 (13)0.60070 (19)0.0573 (8)
H1230.17690.34110.59280.069*
C1240.2131 (2)0.40070 (16)0.67316 (19)0.0644 (9)
H1240.23030.37610.71430.077*
C1250.2192 (2)0.45806 (15)0.68468 (17)0.0618 (8)
H1250.24060.47220.73380.074*
C1260.1940 (2)0.49465 (13)0.62428 (16)0.0530 (7)
H1260.19790.53340.63310.064*
C1310.39848 (16)0.56895 (11)0.48345 (14)0.0387 (5)
C1320.47653 (18)0.56848 (12)0.43764 (16)0.0495 (6)
H1320.47060.54720.39240.059*
C1330.56274 (19)0.59933 (15)0.45864 (18)0.0619 (8)
H1330.61480.59820.42780.074*
C1340.5725 (2)0.63169 (14)0.52458 (19)0.0622 (8)
H1340.63060.65260.53830.075*
C1350.4952 (2)0.63286 (13)0.57037 (17)0.0573 (7)
H1350.50110.65470.61520.069*
C1360.40904 (18)0.60163 (12)0.54986 (15)0.0476 (6)
H1360.35750.60260.58120.057*
C1410.0843 (2)0.69809 (13)0.42430 (18)0.0564 (7)
O110.00554 (18)0.72241 (10)0.45047 (17)0.0879 (8)
C143−0.0206 (18)0.7772 (5)0.4092 (9)0.099 (5)0.47
H14A0.03130.78810.37760.119*0.47
H14B−0.08400.77420.37620.119*0.47
C144−0.0277 (16)0.8177 (5)0.4702 (9)0.217 (11)0.47
H14C−0.08170.80730.49900.326*0.47
H14D−0.04030.85460.44810.326*0.47
H14E0.03420.81820.50420.326*0.47
C14B−0.0790 (11)0.7854 (5)0.3714 (8)0.174 (7)0.53
H14F−0.04540.77060.33000.261*0.53
H14G−0.09980.82360.35970.261*0.53
H14H−0.13680.76260.37730.261*0.53
C14A−0.0121 (16)0.7845 (6)0.4419 (9)0.113 (6)0.53
H14I−0.04320.79990.48490.136*0.53
H14J0.04960.80480.43680.136*0.53
C1420.12649 (18)0.64860 (12)0.54960 (16)0.0463 (6)
C1450.2325 (2)0.69825 (15)0.64581 (18)0.0685 (9)
H14K0.30270.70900.65250.082*
H14L0.22490.66500.67720.082*
C1460.1703 (3)0.7456 (2)0.6722 (3)0.1027 (14)
H14M0.17500.77790.63940.154*
H14N0.19450.75540.72480.154*
H14O0.10150.73380.66950.154*
N20.38330 (14)0.41631 (8)0.17015 (11)0.0379 (4)
O220.66181 (15)0.44204 (10)0.08333 (13)0.0670 (6)
O230.54397 (17)0.32714 (8)0.10776 (12)0.0624 (5)
O240.54353 (15)0.31656 (8)0.23671 (12)0.0604 (5)
F210.4756 (3)0.71223 (9)0.11140 (17)0.1370 (11)
F220.56193 (16)0.70396 (8)0.22086 (16)0.1008 (8)
F230.40388 (17)0.69796 (8)0.21172 (16)0.1031 (8)
C210.47579 (17)0.44015 (10)0.14446 (13)0.0353 (5)
H210.47290.43180.08900.042*
C220.29368 (18)0.43168 (11)0.11700 (14)0.0431 (6)
H22A0.29410.47220.10820.052*
H22B0.23430.42280.14150.052*
C230.36784 (19)0.42964 (11)0.25048 (14)0.0438 (6)
H23A0.34860.46900.25390.053*
H23B0.43020.42410.28400.053*
C240.56778 (17)0.40876 (10)0.18446 (14)0.0396 (5)
H240.57910.42050.23890.048*
C2110.48513 (17)0.50390 (10)0.15241 (13)0.0358 (5)
C2120.51929 (18)0.53005 (11)0.22226 (14)0.0423 (6)
H2120.54220.50810.26520.051*
C2130.5196 (2)0.58816 (11)0.22867 (16)0.0485 (6)
H2130.54190.60510.27590.058*
C2140.4870 (2)0.62105 (11)0.16538 (16)0.0482 (6)
C2150.4547 (2)0.59608 (11)0.09484 (16)0.0496 (6)
H2150.43370.61830.05180.060*
C2160.45416 (18)0.53773 (10)0.08905 (14)0.0413 (6)
H2160.43250.52090.04160.050*
C2170.4827 (3)0.68374 (13)0.1760 (2)0.0680 (9)
C2210.28691 (18)0.40196 (12)0.04024 (14)0.0457 (6)
C2220.2986 (3)0.34475 (14)0.03616 (19)0.0717 (9)
H2220.31430.32390.08130.086*
C2230.2871 (3)0.31745 (17)−0.0360 (2)0.0963 (13)
H2230.29510.2785−0.03890.116*
C2240.2639 (3)0.34860 (19)−0.1022 (2)0.0919 (12)
H2240.25680.3307−0.15010.110*
C2250.2514 (3)0.40534 (18)−0.09839 (19)0.0822 (11)
H2250.23480.4261−0.14360.099*
C2260.2631 (2)0.43214 (14)−0.02777 (16)0.0599 (8)
H2260.25490.4711−0.02560.072*
C2310.28758 (19)0.39275 (13)0.27726 (14)0.0494 (7)
C2320.2990 (2)0.33483 (15)0.2789 (2)0.0697 (9)
H2320.35580.31830.26250.084*
C2330.2253 (3)0.30143 (19)0.3049 (3)0.1002 (14)
H2330.23290.26240.30640.120*
C2340.1405 (3)0.3259 (3)0.3289 (2)0.1038 (16)
H2340.09130.30320.34670.125*
C2350.1292 (3)0.3825 (2)0.3265 (2)0.0914 (13)
H2350.07180.39890.34200.110*
C2360.2017 (2)0.41593 (16)0.30118 (17)0.0656 (9)
H2360.19330.45490.30000.079*
C2420.55040 (19)0.34538 (11)0.18100 (16)0.0470 (6)
C2410.66075 (19)0.42246 (12)0.14585 (17)0.0492 (6)
O210.74317 (16)0.40944 (13)0.19179 (15)0.0946 (9)
C2430.8360 (4)0.4181 (6)0.1506 (4)0.090 (3)0.64
H24A0.83420.39330.10610.109*0.64
H24B0.83980.45690.13320.109*0.64
C2440.9203 (4)0.4050 (5)0.2061 (4)0.109 (3)0.64
H24C0.91810.42790.25150.163*0.64
H24D0.98120.41250.18410.163*0.64
H24E0.91800.36580.22010.163*0.64
C24A0.8544 (10)0.4324 (5)0.1860 (10)0.128 (8)0.36
H24F0.85820.46450.15160.154*0.36
H24G0.89520.43790.23540.154*0.36
C24B0.8650 (19)0.3778 (6)0.1505 (12)0.146 (8)0.36
H24H0.86230.34860.18870.219*0.36
H24I0.92830.37600.13000.219*0.36
H24J0.81150.37240.10940.219*0.36
C2450.5254 (3)0.26672 (13)0.0932 (2)0.0752 (9)
H24K0.49160.25070.13460.090*
H24L0.48220.26180.04480.090*
C2460.6197 (3)0.23760 (18)0.0893 (3)0.1093 (16)
H24M0.65210.25290.04750.164*
H24N0.60710.19800.08040.164*
H24O0.66230.24250.13720.164*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0311 (9)0.0448 (12)0.0382 (11)−0.0060 (8)0.0078 (8)0.0023 (9)
O120.0774 (14)0.0694 (15)0.0820 (16)0.0023 (12)0.0158 (12)0.0264 (13)
O130.0505 (10)0.0579 (12)0.0507 (11)−0.0151 (9)0.0055 (8)−0.0077 (9)
O140.0595 (11)0.0743 (14)0.0534 (12)−0.0140 (10)0.0245 (9)−0.0069 (10)
F110.151 (3)0.404 (6)0.0505 (14)0.166 (3)−0.0337 (15)−0.042 (2)
F120.181 (3)0.202 (4)0.0710 (17)−0.037 (3)0.0001 (17)−0.051 (2)
F130.1219 (19)0.206 (3)0.0443 (12)0.0100 (19)0.0196 (12)−0.0045 (14)
C110.0329 (11)0.0476 (15)0.0381 (13)−0.0077 (10)0.0071 (9)0.0021 (11)
C120.0366 (12)0.0497 (15)0.0395 (13)−0.0102 (10)0.0034 (10)0.0022 (11)
C130.0387 (12)0.0468 (15)0.0412 (14)−0.0007 (10)0.0083 (10)0.0001 (11)
C140.0328 (11)0.0484 (15)0.0481 (15)−0.0059 (10)0.0066 (10)−0.0027 (12)
C1110.0389 (12)0.0480 (15)0.0397 (14)−0.0005 (10)0.0057 (10)0.0046 (11)
C1120.0386 (13)0.0710 (19)0.0407 (14)−0.0045 (12)0.0063 (10)−0.0025 (13)
C1130.0451 (15)0.088 (2)0.0486 (17)−0.0009 (14)−0.0007 (12)−0.0074 (15)
C1140.0560 (16)0.082 (2)0.0394 (15)0.0115 (15)0.0029 (12)−0.0009 (14)
C1150.0568 (16)0.077 (2)0.0440 (16)0.0044 (14)0.0159 (13)0.0072 (14)
C1160.0407 (13)0.0634 (18)0.0443 (15)−0.0045 (12)0.0096 (11)0.0045 (13)
C1170.075 (2)0.147 (4)0.046 (2)0.022 (2)0.0023 (17)−0.011 (2)
C1210.0347 (12)0.0536 (17)0.0428 (14)−0.0089 (11)0.0078 (10)0.0037 (12)
C1220.0373 (12)0.0577 (18)0.0529 (16)−0.0096 (11)0.0095 (11)0.0031 (13)
C1230.0419 (14)0.0547 (18)0.077 (2)−0.0031 (12)0.0121 (13)0.0169 (16)
C1240.0469 (15)0.087 (3)0.060 (2)−0.0028 (15)0.0057 (13)0.0303 (18)
C1250.0586 (17)0.083 (2)0.0435 (16)−0.0127 (15)0.0039 (13)0.0119 (16)
C1260.0522 (15)0.0607 (18)0.0464 (16)−0.0130 (13)0.0068 (12)0.0043 (13)
C1310.0328 (11)0.0470 (15)0.0365 (13)0.0011 (10)0.0049 (9)0.0065 (11)
C1320.0392 (13)0.0665 (19)0.0438 (15)0.0014 (12)0.0094 (10)0.0055 (13)
C1330.0362 (14)0.092 (2)0.0584 (19)−0.0052 (14)0.0108 (12)0.0165 (17)
C1340.0393 (14)0.079 (2)0.066 (2)−0.0162 (13)−0.0054 (13)0.0145 (17)
C1350.0508 (15)0.066 (2)0.0523 (17)−0.0068 (13)−0.0070 (12)−0.0023 (14)
C1360.0383 (12)0.0619 (18)0.0425 (14)−0.0027 (11)0.0043 (10)0.0007 (13)
C1410.0518 (16)0.0537 (18)0.0621 (19)−0.0016 (13)0.0002 (13)0.0017 (15)
O110.0780 (15)0.0585 (15)0.131 (2)0.0232 (12)0.0290 (15)0.0073 (14)
C1430.138 (11)0.039 (5)0.118 (15)0.043 (6)0.009 (11)0.012 (7)
C1440.37 (3)0.088 (9)0.210 (18)0.103 (13)0.118 (19)−0.023 (10)
C14B0.151 (10)0.088 (8)0.264 (18)0.005 (7)−0.058 (11)0.077 (10)
C14A0.123 (10)0.126 (14)0.094 (11)0.051 (9)0.029 (9)0.015 (8)
C1420.0394 (12)0.0498 (16)0.0512 (16)−0.0022 (11)0.0118 (11)−0.0056 (13)
C1450.0693 (19)0.080 (2)0.0548 (19)−0.0153 (17)−0.0003 (15)−0.0133 (17)
C1460.099 (3)0.116 (4)0.092 (3)−0.004 (3)0.008 (2)−0.053 (3)
N20.0424 (10)0.0403 (12)0.0312 (10)−0.0019 (8)0.0055 (8)0.0006 (9)
O220.0570 (12)0.0791 (15)0.0675 (14)−0.0012 (10)0.0181 (10)0.0241 (12)
O230.0950 (15)0.0400 (11)0.0562 (12)0.0020 (10)0.0259 (11)−0.0058 (9)
O240.0768 (13)0.0461 (12)0.0600 (13)0.0070 (9)0.0149 (10)0.0181 (10)
F210.262 (4)0.0399 (12)0.111 (2)0.0095 (16)0.031 (2)0.0165 (12)
F220.0904 (14)0.0496 (12)0.161 (2)−0.0121 (10)0.0093 (14)−0.0315 (13)
F230.0920 (14)0.0521 (12)0.171 (2)0.0132 (10)0.0404 (15)−0.0288 (13)
C210.0431 (12)0.0317 (12)0.0313 (12)0.0008 (9)0.0055 (9)−0.0003 (10)
C220.0436 (13)0.0460 (15)0.0390 (14)−0.0009 (11)0.0018 (10)−0.0003 (11)
C230.0475 (13)0.0504 (16)0.0342 (13)−0.0032 (11)0.0080 (10)−0.0005 (11)
C240.0459 (13)0.0351 (14)0.0379 (13)0.0039 (10)0.0056 (10)0.0015 (10)
C2110.0381 (11)0.0335 (13)0.0368 (13)0.0001 (9)0.0079 (9)−0.0010 (10)
C2120.0508 (14)0.0379 (14)0.0377 (14)−0.0028 (11)0.0027 (10)0.0006 (11)
C2130.0602 (16)0.0420 (16)0.0436 (15)−0.0040 (12)0.0074 (12)−0.0099 (12)
C2140.0569 (15)0.0334 (14)0.0567 (17)0.0008 (11)0.0160 (12)−0.0040 (12)
C2150.0617 (16)0.0395 (15)0.0481 (16)0.0054 (12)0.0088 (12)0.0077 (12)
C2160.0528 (14)0.0375 (14)0.0341 (13)0.0022 (11)0.0073 (10)0.0004 (10)
C2170.082 (2)0.0404 (17)0.083 (2)0.0040 (16)0.0182 (18)−0.0055 (17)
C2210.0477 (14)0.0494 (16)0.0393 (14)−0.0060 (11)0.0025 (11)−0.0033 (12)
C2220.099 (2)0.053 (2)0.058 (2)−0.0020 (17)−0.0138 (17)−0.0064 (15)
C2230.136 (4)0.057 (2)0.087 (3)0.009 (2)−0.020 (2)−0.024 (2)
C2240.134 (3)0.090 (3)0.047 (2)0.010 (2)−0.007 (2)−0.020 (2)
C2250.116 (3)0.087 (3)0.0420 (18)0.000 (2)0.0004 (18)0.0004 (18)
C2260.0745 (19)0.062 (2)0.0422 (16)−0.0043 (15)0.0022 (13)0.0014 (14)
C2310.0486 (14)0.066 (2)0.0333 (13)−0.0115 (13)0.0039 (11)0.0043 (12)
C2320.0589 (18)0.073 (2)0.076 (2)−0.0123 (15)0.0031 (15)0.0234 (18)
C2330.095 (3)0.088 (3)0.116 (3)−0.030 (2)0.007 (3)0.043 (3)
C2340.081 (3)0.149 (5)0.083 (3)−0.060 (3)0.019 (2)0.021 (3)
C2350.069 (2)0.145 (4)0.064 (2)−0.038 (2)0.0262 (17)−0.010 (2)
C2360.0579 (17)0.094 (2)0.0477 (17)−0.0152 (16)0.0157 (13)−0.0152 (16)
C2420.0521 (14)0.0379 (15)0.0528 (17)0.0074 (11)0.0134 (12)0.0034 (13)
C2410.0470 (14)0.0463 (16)0.0546 (17)0.0041 (11)0.0077 (12)0.0035 (13)
O210.0449 (12)0.148 (3)0.0906 (18)0.0171 (13)0.0057 (11)0.0395 (17)
C2430.040 (3)0.169 (9)0.062 (4)0.010 (4)0.007 (3)0.016 (5)
C2440.058 (4)0.179 (8)0.093 (5)0.010 (5)0.022 (3)0.007 (6)
C24A0.148 (16)0.082 (10)0.131 (14)0.019 (9)−0.083 (12)0.017 (9)
C24B0.21 (2)0.087 (11)0.155 (18)0.026 (12)0.063 (16)−0.012 (11)
C2450.098 (3)0.0442 (18)0.085 (2)0.0035 (17)0.0177 (19)−0.0142 (17)
C2460.085 (3)0.070 (3)0.171 (5)0.023 (2)0.007 (3)−0.033 (3)

Geometric parameters (Å, °)

N1—C131.465 (3)N2—C231.470 (3)
N1—C121.469 (3)N2—C221.472 (3)
N1—C111.479 (3)N2—C211.479 (3)
O12—C1411.187 (4)O22—C2411.183 (3)
O13—C1421.329 (3)O23—C2421.337 (3)
O13—C1451.454 (3)O23—C2451.468 (4)
O14—C1421.197 (3)O24—C2421.197 (3)
F11—C1171.265 (4)F21—C2171.302 (4)
F12—C1171.361 (6)F22—C2171.331 (4)
F13—C1171.295 (5)F23—C2171.332 (4)
C11—C1111.519 (3)C21—C2111.518 (3)
C11—C141.538 (3)C21—C241.534 (3)
C11—H110.9800C21—H210.9800
C12—C1211.508 (4)C22—C2211.501 (4)
C12—H12A0.9700C22—H22A0.9700
C12—H12B0.9700C22—H22B0.9700
C13—C1311.508 (3)C23—C2311.502 (3)
C13—H13A0.9700C23—H23A0.9700
C13—H13B0.9700C23—H23B0.9700
C14—C1411.515 (4)C24—C2421.518 (4)
C14—C1421.519 (4)C24—C2411.520 (4)
C14—H140.9800C24—H240.9800
C111—C1161.391 (3)C211—C2161.384 (3)
C111—C1121.392 (3)C211—C2121.391 (3)
C112—C1131.377 (4)C212—C2131.379 (4)
C112—H1120.9300C212—H2120.9300
C113—C1141.382 (4)C213—C2141.376 (4)
C113—H1130.9300C213—H2130.9300
C114—C1151.382 (4)C214—C2151.383 (4)
C114—C1171.487 (5)C214—C2171.497 (4)
C115—C1161.380 (4)C215—C2161.384 (4)
C115—H1150.9300C215—H2150.9300
C116—H1160.9300C216—H2160.9300
C121—C1221.383 (4)C221—C2221.366 (4)
C121—C1261.395 (4)C221—C2261.385 (4)
C122—C1231.394 (4)C222—C2231.402 (5)
C122—H1220.9300C222—H2220.9300
C123—C1241.371 (4)C223—C2241.371 (5)
C123—H1230.9300C223—H2230.9300
C124—C1251.373 (5)C224—C2251.355 (5)
C124—H1240.9300C224—H2240.9300
C125—C1261.372 (4)C225—C2261.374 (4)
C125—H1250.9300C225—H2250.9300
C126—H1260.9300C226—H2260.9300
C131—C1361.382 (4)C231—C2321.379 (5)
C131—C1321.389 (3)C231—C2361.383 (4)
C132—C1331.379 (4)C232—C2331.383 (5)
C132—H1320.9300C232—H2320.9300
C133—C1341.371 (4)C233—C2341.384 (7)
C133—H1330.9300C233—H2330.9300
C134—C1351.380 (4)C234—C2351.349 (7)
C134—H1340.9300C234—H2340.9300
C135—C1361.382 (4)C235—C2361.366 (5)
C135—H1350.9300C235—H2350.9300
C136—H1360.9300C236—H2360.9300
C141—O111.330 (4)C241—O211.321 (3)
O11—C14A1.492 (12)O21—C2431.522 (6)
O11—C1431.504 (10)O21—C24A1.602 (14)
C143—C1441.440 (13)C243—C2441.430 (8)
C143—H14A0.9700C243—H24A0.9700
C143—H14B0.9700C243—H24B0.9700
C144—H14C0.9600C244—H24C0.9600
C144—H14D0.9600C244—H24D0.9600
C144—H14E0.9600C244—H24E0.9600
C14B—C14A1.430 (13)C24A—C24B1.447 (12)
C14B—H14F0.9600C24A—H24F0.9700
C14B—H14G0.9600C24A—H24G0.9700
C14B—H14H0.9600C24B—H24H0.9600
C14A—H14I0.9700C24B—H24I0.9600
C14A—H14J0.9700C24B—H24J0.9600
C145—C1461.501 (5)C245—C2461.449 (5)
C145—H14K0.9700C245—H24K0.9700
C145—H14L0.9700C245—H24L0.9700
C146—H14M0.9600C246—H24M0.9600
C146—H14N0.9600C246—H24N0.9600
C146—H14O0.9600C246—H24O0.9600
C13—N1—C12110.9 (2)C145—C146—H14O109.5
C13—N1—C11112.11 (17)H14M—C146—H14O109.5
C12—N1—C11115.09 (18)H14N—C146—H14O109.5
C142—O13—C145116.9 (2)C23—N2—C22110.25 (19)
N1—C11—C111115.3 (2)C23—N2—C21115.01 (18)
N1—C11—C14109.64 (18)C22—N2—C21111.59 (18)
C111—C11—C14112.57 (19)C242—O23—C245117.9 (2)
N1—C11—H11106.2N2—C21—C211114.48 (18)
C111—C11—H11106.2N2—C21—C24109.68 (18)
C14—C11—H11106.2C211—C21—C24112.74 (19)
N1—C12—C121111.26 (19)N2—C21—H21106.5
N1—C12—H12A109.4C211—C21—H21106.5
C121—C12—H12A109.4C24—C21—H21106.5
N1—C12—H12B109.4N2—C22—C221113.6 (2)
C121—C12—H12B109.4N2—C22—H22A108.8
H12A—C12—H12B108.0C221—C22—H22A108.8
N1—C13—C131113.6 (2)N2—C22—H22B108.8
N1—C13—H13A108.8C221—C22—H22B108.8
C131—C13—H13A108.8H22A—C22—H22B107.7
N1—C13—H13B108.8N2—C23—C231110.9 (2)
C131—C13—H13B108.8N2—C23—H23A109.5
H13A—C13—H13B107.7C231—C23—H23A109.5
C141—C14—C142109.5 (2)N2—C23—H23B109.5
C141—C14—C11112.3 (2)C231—C23—H23B109.5
C142—C14—C11111.1 (2)H23A—C23—H23B108.0
C141—C14—H14107.9C242—C24—C241108.9 (2)
C142—C14—H14107.9C242—C24—C21110.4 (2)
C11—C14—H14107.9C241—C24—C21110.8 (2)
C116—C111—C112117.7 (2)C242—C24—H24108.9
C116—C111—C11119.6 (2)C241—C24—H24108.9
C112—C111—C11122.7 (2)C21—C24—H24108.9
C113—C112—C111121.1 (2)C216—C211—C212118.3 (2)
C113—C112—H112119.5C216—C211—C21119.2 (2)
C111—C112—H112119.5C212—C211—C21122.4 (2)
C112—C113—C114120.3 (3)C213—C212—C211120.8 (2)
C112—C113—H113119.9C213—C212—H212119.6
C114—C113—H113119.9C211—C212—H212119.6
C115—C114—C113119.6 (3)C214—C213—C212120.1 (2)
C115—C114—C117121.1 (3)C214—C213—H213119.9
C113—C114—C117119.2 (3)C212—C213—H213119.9
C116—C115—C114119.8 (3)C213—C214—C215120.2 (2)
C116—C115—H115120.1C213—C214—C217118.4 (3)
C114—C115—H115120.1C215—C214—C217121.3 (3)
C115—C116—C111121.5 (2)C214—C215—C216119.3 (2)
C115—C116—H116119.3C214—C215—H215120.4
C111—C116—H116119.3C216—C215—H215120.4
F11—C117—F13110.7 (4)C215—C216—C211121.4 (2)
F11—C117—F12104.0 (4)C215—C216—H216119.3
F13—C117—F1299.9 (3)C211—C216—H216119.3
F11—C117—C114114.4 (3)F21—C217—F22106.9 (3)
F13—C117—C114115.2 (3)F21—C217—F23106.9 (3)
F12—C117—C114111.1 (4)F22—C217—F23105.0 (3)
C122—C121—C126118.0 (2)F21—C217—C214114.0 (3)
C122—C121—C12121.0 (2)F22—C217—C214112.8 (3)
C126—C121—C12121.0 (2)F23—C217—C214110.6 (3)
C121—C122—C123120.6 (3)C222—C221—C226118.9 (3)
C121—C122—H122119.7C222—C221—C22121.0 (3)
C123—C122—H122119.7C226—C221—C22120.0 (3)
C124—C123—C122120.2 (3)C221—C222—C223120.1 (3)
C124—C123—H123119.9C221—C222—H222119.9
C122—C123—H123119.9C223—C222—H222119.9
C123—C124—C125119.7 (3)C224—C223—C222119.5 (4)
C123—C124—H124120.2C224—C223—H223120.2
C125—C124—H124120.2C222—C223—H223120.2
C126—C125—C124120.5 (3)C225—C224—C223120.6 (3)
C126—C125—H125119.8C225—C224—H224119.7
C124—C125—H125119.8C223—C224—H224119.7
C125—C126—C121121.0 (3)C224—C225—C226119.9 (3)
C125—C126—H126119.5C224—C225—H225120.0
C121—C126—H126119.5C226—C225—H225120.0
C136—C131—C132118.3 (2)C225—C226—C221121.0 (3)
C136—C131—C13121.9 (2)C225—C226—H226119.5
C132—C131—C13119.8 (2)C221—C226—H226119.5
C133—C132—C131120.6 (3)C232—C231—C236118.8 (3)
C133—C132—H132119.7C232—C231—C23120.1 (3)
C131—C132—H132119.7C236—C231—C23121.0 (3)
C134—C133—C132120.7 (3)C231—C232—C233119.5 (4)
C134—C133—H133119.7C231—C232—H232120.2
C132—C133—H133119.7C233—C232—H232120.2
C133—C134—C135119.3 (3)C232—C233—C234120.3 (4)
C133—C134—H134120.3C232—C233—H233119.8
C135—C134—H134120.3C234—C233—H233119.8
C134—C135—C136120.2 (3)C235—C234—C233119.9 (3)
C134—C135—H135119.9C235—C234—H234120.0
C136—C135—H135119.9C233—C234—H234120.0
C135—C136—C131120.9 (2)C234—C235—C236120.2 (4)
C135—C136—H136119.5C234—C235—H235119.9
C131—C136—H136119.5C236—C235—H235119.9
O12—C141—O11125.0 (3)C235—C236—C231121.2 (4)
O12—C141—C14126.2 (3)C235—C236—H236119.4
O11—C141—C14108.8 (3)C231—C236—H236119.4
C141—O11—C14A121.0 (9)O24—C242—O23125.7 (3)
C141—O11—C143111.1 (8)O24—C242—C24123.9 (3)
C14A—O11—C14322.8 (9)O23—C242—C24110.4 (2)
C144—C143—O11104.8 (11)O22—C241—O21123.1 (3)
C144—C143—H14A110.8O22—C241—C24126.1 (2)
O11—C143—H14A110.8O21—C241—C24110.8 (2)
C144—C143—H14B110.8C241—O21—C243110.9 (3)
O11—C143—H14B110.8C241—O21—C24A127.0 (6)
H14A—C143—H14B108.9C243—O21—C24A26.5 (5)
C14A—C14B—H14F109.5C244—C243—O21106.2 (5)
C14A—C14B—H14G109.5C244—C243—H24A110.5
H14F—C14B—H14G109.5O21—C243—H24A110.5
C14A—C14B—H14H109.5C244—C243—H24B110.5
H14F—C14B—H14H109.5O21—C243—H24B110.5
H14G—C14B—H14H109.5H24A—C243—H24B108.7
C14B—C14A—O11100.2 (11)C24B—C24A—O2182.1 (12)
C14B—C14A—H14I111.7C24B—C24A—H24F114.9
O11—C14A—H14I111.7O21—C24A—H24F114.9
C14B—C14A—H14J111.7C24B—C24A—H24G114.9
O11—C14A—H14J111.7O21—C24A—H24G114.9
H14I—C14A—H14J109.5H24F—C24A—H24G112.0
O14—C142—O13125.5 (3)C246—C245—O23109.9 (3)
O14—C142—C14124.2 (2)C246—C245—H24K109.7
O13—C142—C14110.3 (2)O23—C245—H24K109.7
O13—C145—C146110.5 (3)C246—C245—H24L109.7
O13—C145—H14K109.5O23—C245—H24L109.7
C146—C145—H14K109.5H24K—C245—H24L108.2
O13—C145—H14L109.5C245—C246—H24M109.5
C146—C145—H14L109.5C245—C246—H24N109.5
H14K—C145—H14L108.1H24M—C246—H24N109.5
C145—C146—H14M109.5C245—C246—H24O109.5
C145—C146—H14N109.5H24M—C246—H24O109.5
H14M—C146—H14N109.5H24N—C246—H24O109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C226—H226···O22i0.932.603.323 (4)135
C235—H235···O14ii0.932.513.294 (4)142

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2702).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dayam, R., Al-Mawsawi, L. Q. & Neamati, N. (2007). Bioorg. Med. Chem. Lett.17, 6155–6159. [PubMed]
  • Patil, S., Kamath, S., Sanchez, T., Neamati, N., Schinazi, R. F. & Buolamwini, J. K. (2007). Bioorg. Med. Chem.15, 1212–1228. [PubMed]
  • Pommier, Y. & Neamati, N. (2006). Bioorg. Med. Chem.14, 3785–3792. [PubMed]
  • Ramkumar, K., Tambov, K. V., Gundla, R., Manaev, A. V., Yarovenko, V., Traven, V. F. & Neamati, N. (2008). Bioorg. Med. Chem.16, 8988–8998. [PubMed]
  • Sechi, M., Carta, F., Sannia, L., Dallocchio, R., Dessı‘, A., Al-Safi, R. I. & Neamati, N. (2009). Antivir. Res.81, 267–276. [PubMed]
  • Sechi, M., Rizzi, G., Bacchi, A., Carcelli, M., Rogolino, D., Pala, N., Sanchez, T. W., Taheri, L., Dayam, R. & Neamati, N. (2009). Bioorg. Med. Chem.17, 2925–2935. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Westrip, S. P. (2010). publCIF. In preparation.
  • Zeng, L. F., Jiang, X. H., Sanchez, T., Zhang, H. S., Dayam, R., Neamati, N. & Long, Y. Q. (2008). Bioorg. Med. Chem.16, 7777–7787. [PubMed]
  • Zeng, L. F., Zhang, H.-S., Wang, Y. H., Sanchez, T., Zheng, Y. T., Neamati, N. & Long, Y. Q. (2008). Bioorg. Med. Chem. Lett.18, 4521–4524. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography