PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m377.
Published online 2010 March 6. doi:  10.1107/S1600536810007889
PMCID: PMC2983884

2-[(R)-Hydr­oxy(6-methoxy­quinolinium-4-yl)meth­yl]-8-vinyl-1-azoniabicyclo­[2.2.2]octane tetra­chloridoferrate(III) chloride monohydrate

Abstract

In the title salt, (C20H26N2O2)[FeCl4]Cl·H2O, the FeIII atom exists in a tetra­hedral coordination environment. The cation, anions and water mol­ecules are linked by N—H(...)Cl, O—H(...)Cl and O—H(...)O hydrogen bonds into a layer network.

Related literature

For ferroelectricity and SHG of chiral coordination compounds, see: Fu et al. (2007 [triangle]); Qu et al. (2003 [triangle]). For related transition-metal complexes, see: Zhao et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m377-scheme1.jpg

Experimental

Crystal data

  • (C20H26N2O2)[FeCl4]Cl·H2O
  • M r = 577.54
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m377-efi1.jpg
  • a = 6.6838 (10) Å
  • b = 18.843 (2) Å
  • c = 10.8716 (10) Å
  • β = 104.918 (17)°
  • V = 1323.1 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.10 mm−1
  • T = 293 K
  • 0.30 × 0.26 × 0.22 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.82, T max = 0.88
  • 12145 measured reflections
  • 5166 independent reflections
  • 3650 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.118
  • S = 1.01
  • 5166 reflections
  • 281 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.30 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2490 Friedel pairs
  • Flack parameter: 0.01 (2)

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810007889/ng2725sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007889/ng2725Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a start-up grant from Jiangsu University of Science and Technology

supplementary crystallographic information

Comment

The existence of a chiral centre in an organic ligand is very important for the construction noncentrosymmetric or chiral coordination polymers that exhibit desirable physical properties such as ferroelectricity (Fu et al., 2007), Chiral quinine has a chiral centre which have shown tremendous scope in the synthesis of transition-metal complexes (Zhao et al., 2003; Qu et al.,2003). The construction of new members of this family of ligands is an important direction in the development of modern coordination chemistry. We report here the crystal structure of the title compound

The asymmetric unit of the title compound,C20H26N2O2.FeCl4.Cl.H2O(Fig.1), consists of one protoned quinine and a tetrachloro-ironanion with the FeIII ion in a slightly distorted tetrahedral coordination environment, The crystal structure is stabilized by intermolecular N—H···Cl, O—H···Cl and O—H···O hydrogen bonds.The H-bonds form of1D chain viewedalong the a-axis (Fig.2).

Experimental

A mixture of quinine (1 mmol, 0.324 g ), FeCl3(1 mmol, 0.156 g) and 10% aqueous HCl (6 ml) were mixed and dissolved in 20 ml water by heating to 353 K (0.5 h) forming a clear solution. The reaction mixture was cooled slowly to room temperature, crystals of the title compound were formed after 11 days.

Refinement

All H atoms of quinine were placed in calculated positions , with C—H = 0.93-0.98 Å O—H = 0.85 Å and N—H = 0.96 Å, and re?ned using a riding model, with Uiso(H)=1.2Ueq(C, N, O) or 1.5 Ueq(C) for methyl H atoms.H3A and H3B were located in difference fourier maps.

Figures

Fig. 1.
The asymmetric unit of the title compound with atom labels. Displacement ellipsoids were drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity.
Fig. 2.
The packing viewed along the c axis. Hydrogen bonds are drawn as dashed lines

Crystal data

(C20H26N2O2)[FeCl4]Cl·H2OF(000) = 594
Mr = 577.54Dx = 1.450 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3650 reflections
a = 6.6838 (10) Åθ = 2.9–26.0°
b = 18.843 (2) ŵ = 1.10 mm1
c = 10.8716 (10) ÅT = 293 K
β = 104.918 (17)°Block, yellow
V = 1323.1 (3) Å30.30 × 0.26 × 0.22 mm
Z = 2

Data collection

Rigaku SCXmini diffractometer5166 independent reflections
Radiation source: fine-focus sealed tube3650 reflections with I > 2σ(I)
graphiteRint = 0.038
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 2.9°
ω scansh = −8→8
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −23→23
Tmin = 0.82, Tmax = 0.88l = −13→13
12145 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.118w = 1/[σ2(Fo2) + (0.0558P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
5166 reflectionsΔρmax = 0.32 e Å3
281 parametersΔρmin = −0.30 e Å3
1 restraintAbsolute structure: Flack (1983), 2490 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.01 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1691 (8)0.4587 (3)0.0478 (5)0.0721 (13)
H1A0.07000.43060.07060.087*
C20.2105 (7)0.5255 (3)0.0993 (4)0.0631 (11)
H2A0.13590.54260.15440.076*
C30.3610 (6)0.5673 (2)0.0701 (4)0.0520 (10)
C40.4661 (6)0.5415 (2)−0.0214 (4)0.0508 (9)
C50.4159 (7)0.4721 (3)−0.0707 (4)0.0623 (11)
C60.5180 (8)0.4417 (3)−0.1549 (4)0.0762 (14)
H6A0.48410.3962−0.18650.091*
C70.6682 (8)0.4797 (3)−0.1902 (4)0.0750 (14)
H7A0.73910.4595−0.24470.090*
C80.7173 (8)0.5502 (3)−0.1442 (4)0.0646 (12)
C90.6189 (7)0.5800 (2)−0.0622 (3)0.0567 (10)
H9A0.65210.6260−0.03270.068*
C100.9150 (9)0.6537 (3)−0.1527 (5)0.0857 (16)
H10A1.02180.6701−0.19010.129*
H10B0.96240.6567−0.06160.129*
H10C0.79380.6826−0.18180.129*
C110.4201 (6)0.6379 (2)0.1375 (3)0.0508 (9)
H11A0.45400.67210.07810.061*
C120.6126 (6)0.62488 (19)0.2487 (3)0.0467 (9)
H12A0.70890.59590.21560.056*
C130.5696 (7)0.5844 (2)0.3628 (4)0.0565 (10)
H13A0.42290.58610.35830.068*
H13B0.60980.53510.36010.068*
C140.6917 (7)0.6182 (3)0.4861 (4)0.0622 (11)
H14A0.67830.58930.55850.075*
C150.6009 (9)0.6922 (3)0.4946 (5)0.0815 (14)
H15A0.45750.68810.49760.098*
H15B0.67740.71570.57180.098*
C160.6143 (8)0.7356 (3)0.3786 (5)0.0770 (14)
H16A0.47630.74770.32850.092*
H16B0.68940.77930.40580.092*
C170.9372 (7)0.6747 (3)0.3784 (4)0.0672 (12)
H17A1.01080.71800.41080.081*
H17B1.01370.65060.32610.081*
C180.9227 (7)0.6269 (3)0.4897 (4)0.0667 (12)
H18A0.99090.65130.56890.080*
C191.0326 (9)0.5569 (3)0.4871 (6)0.0859 (16)
H19A0.98330.52740.41720.103*
C201.1894 (11)0.5353 (4)0.5747 (7)0.126 (3)
H20A1.24280.56340.64590.151*
H20B1.24930.49150.56670.151*
N10.2684 (6)0.4343 (2)−0.0331 (4)0.0677 (10)
H1B0.23530.3875−0.06730.081*
N20.7244 (6)0.69263 (18)0.2997 (3)0.0574 (9)
H2C0.73730.72110.22890.069*
O10.8655 (5)0.5813 (2)−0.1892 (3)0.0807 (10)
O20.2546 (5)0.66425 (17)0.1827 (3)0.0638 (8)
H2B0.22110.70510.15090.096*
Cl50.2012 (3)0.27667 (8)−0.07702 (16)0.1153 (6)
Cl30.8401 (4)0.35869 (11)0.53267 (16)0.1329 (7)
Cl40.6722 (3)0.24251 (8)0.26529 (17)0.1000 (5)
Cl20.3307 (3)0.37297 (11)0.3350 (2)0.1408 (9)
Fe10.64976 (11)0.35002 (3)0.33590 (7)0.0748 (2)
Cl10.7554 (2)0.42527 (7)0.21006 (13)0.0801 (4)
O30.2399 (9)0.7902 (3)0.0442 (6)0.156 (2)
H3B0.19000.81900.08870.234*
H3A0.14290.7743−0.01620.234*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.073 (3)0.061 (3)0.081 (3)−0.006 (2)0.017 (3)−0.003 (3)
C20.062 (3)0.068 (3)0.064 (3)0.005 (2)0.026 (2)−0.002 (2)
C30.056 (2)0.056 (2)0.043 (2)0.0083 (18)0.0107 (19)0.0022 (18)
C40.056 (2)0.052 (2)0.040 (2)0.0091 (18)0.0052 (19)0.0009 (18)
C50.070 (3)0.065 (3)0.048 (2)0.010 (2)0.008 (2)0.000 (2)
C60.089 (4)0.073 (3)0.065 (3)0.011 (3)0.017 (3)−0.015 (3)
C70.083 (4)0.094 (4)0.045 (2)0.018 (3)0.012 (3)−0.015 (2)
C80.075 (3)0.082 (3)0.038 (2)0.010 (2)0.015 (2)−0.004 (2)
C90.068 (3)0.064 (3)0.038 (2)0.005 (2)0.013 (2)−0.0013 (19)
C100.090 (4)0.110 (5)0.063 (3)−0.019 (3)0.033 (3)0.002 (3)
C110.060 (3)0.051 (2)0.042 (2)0.0082 (18)0.0150 (19)0.0027 (18)
C120.059 (2)0.0405 (19)0.0438 (19)0.0040 (16)0.0192 (18)−0.0006 (16)
C130.056 (2)0.065 (3)0.046 (2)−0.003 (2)0.0091 (19)0.010 (2)
C140.063 (3)0.080 (3)0.044 (2)0.002 (2)0.014 (2)0.009 (2)
C150.095 (4)0.083 (4)0.073 (3)0.011 (3)0.034 (3)−0.015 (3)
C160.094 (4)0.056 (3)0.080 (3)0.010 (2)0.020 (3)−0.019 (2)
C170.065 (3)0.073 (3)0.064 (3)−0.012 (2)0.017 (2)−0.004 (2)
C180.063 (3)0.079 (3)0.049 (2)0.002 (2)−0.003 (2)−0.010 (2)
C190.068 (3)0.087 (4)0.094 (4)0.002 (3)0.006 (3)0.001 (3)
C200.107 (5)0.117 (5)0.140 (6)0.028 (4)0.006 (5)0.027 (5)
N10.076 (3)0.053 (2)0.071 (2)−0.0045 (19)0.012 (2)−0.006 (2)
N20.069 (2)0.0482 (19)0.057 (2)−0.0006 (16)0.0193 (18)0.0030 (16)
O10.085 (2)0.109 (3)0.0543 (18)−0.005 (2)0.0304 (17)−0.0106 (19)
O20.0635 (18)0.0644 (19)0.0641 (17)0.0230 (15)0.0178 (15)−0.0030 (15)
Cl50.1995 (19)0.0617 (8)0.1125 (12)0.0004 (9)0.0904 (13)−0.0178 (8)
Cl30.201 (2)0.1015 (12)0.0886 (10)0.0237 (14)0.0246 (11)0.0161 (10)
Cl40.1138 (11)0.0722 (8)0.1292 (13)0.0163 (8)0.0588 (10)0.0050 (8)
Cl20.1171 (13)0.1379 (16)0.203 (2)0.0635 (11)0.1064 (14)0.0824 (15)
Fe10.0851 (5)0.0634 (4)0.0877 (5)0.0254 (4)0.0437 (4)0.0243 (4)
Cl10.0798 (8)0.0780 (8)0.0897 (8)0.0127 (6)0.0352 (7)0.0281 (7)
O30.163 (5)0.090 (3)0.211 (6)0.004 (3)0.040 (4)0.019 (4)

Geometric parameters (Å, °)

C1—N11.314 (6)C13—H13B0.9700
C1—C21.377 (7)C14—C151.533 (7)
C1—H1A0.9300C14—C181.543 (7)
C2—C31.378 (6)C14—H14A0.9800
C2—H2A0.9300C15—C161.525 (7)
C3—C41.442 (6)C15—H15A0.9700
C3—C111.521 (6)C15—H15B0.9700
C4—C91.414 (6)C16—N21.503 (6)
C4—C51.420 (6)C16—H16A0.9700
C5—N11.362 (6)C16—H16B0.9700
C5—C61.397 (6)C17—N21.497 (6)
C6—C71.367 (7)C17—C181.531 (7)
C6—H6A0.9300C17—H17A0.9700
C7—C81.428 (7)C17—H17B0.9700
C7—H7A0.9300C18—C191.513 (7)
C8—O11.346 (6)C18—H18A0.9800
C8—C91.358 (6)C19—C201.288 (8)
C9—H9A0.9300C19—H19A0.9300
C10—O11.435 (7)C20—H20A0.9300
C10—H10A0.9600C20—H20B0.9300
C10—H10B0.9600N1—H1B0.9599
C10—H10C0.9600N2—H2C0.9601
C11—O21.411 (5)O2—H2B0.8499
C11—C121.541 (5)Cl3—Fe12.196 (2)
C11—H11A0.9800Cl4—Fe12.1852 (16)
C12—N21.511 (5)Cl2—Fe12.1734 (17)
C12—C131.545 (5)Fe1—Cl12.2085 (13)
C12—H12A0.9800O3—H3B0.8501
C13—C141.517 (6)O3—H3A0.8499
C13—H13A0.9700
N1—C1—C2120.6 (5)C15—C14—C18108.1 (4)
N1—C1—H1A119.7C13—C14—H14A109.7
C2—C1—H1A119.7C15—C14—H14A109.7
C1—C2—C3120.8 (4)C18—C14—H14A109.7
C1—C2—H2A119.6C16—C15—C14109.2 (4)
C3—C2—H2A119.6C16—C15—H15A109.8
C2—C3—C4118.7 (4)C14—C15—H15A109.8
C2—C3—C11120.2 (4)C16—C15—H15B109.8
C4—C3—C11121.0 (4)C14—C15—H15B109.8
C9—C4—C5118.3 (4)H15A—C15—H15B108.3
C9—C4—C3124.2 (4)N2—C16—C15108.9 (4)
C5—C4—C3117.5 (4)N2—C16—H16A109.9
N1—C5—C6119.7 (5)C15—C16—H16A109.9
N1—C5—C4119.2 (4)N2—C16—H16B109.9
C6—C5—C4121.1 (5)C15—C16—H16B109.9
C7—C6—C5119.1 (5)H16A—C16—H16B108.3
C7—C6—H6A120.4N2—C17—C18109.9 (4)
C5—C6—H6A120.4N2—C17—H17A109.7
C6—C7—C8120.6 (4)C18—C17—H17A109.7
C6—C7—H7A119.7N2—C17—H17B109.7
C8—C7—H7A119.7C18—C17—H17B109.7
O1—C8—C9125.8 (5)H17A—C17—H17B108.2
O1—C8—C7113.7 (4)C19—C18—C17111.6 (4)
C9—C8—C7120.5 (5)C19—C18—C14113.2 (4)
C8—C9—C4120.3 (4)C17—C18—C14108.0 (4)
C8—C9—H9A119.8C19—C18—H18A107.9
C4—C9—H9A119.8C17—C18—H18A107.9
O1—C10—H10A109.5C14—C18—H18A107.9
O1—C10—H10B109.5C20—C19—C18124.7 (6)
H10A—C10—H10B109.5C20—C19—H19A117.7
O1—C10—H10C109.5C18—C19—H19A117.7
H10A—C10—H10C109.5C19—C20—H20A120.0
H10B—C10—H10C109.5C19—C20—H20B120.0
O2—C11—C3110.2 (4)H20A—C20—H20B120.0
O2—C11—C12110.7 (3)C1—N1—C5123.2 (4)
C3—C11—C12107.4 (3)C1—N1—H1B118.4
O2—C11—H11A109.5C5—N1—H1B118.4
C3—C11—H11A109.5C17—N2—C16109.1 (3)
C12—C11—H11A109.5C17—N2—C12109.1 (3)
N2—C12—C11112.8 (3)C16—N2—C12113.4 (4)
N2—C12—C13107.4 (3)C17—N2—H2C108.4
C11—C12—C13114.7 (3)C16—N2—H2C108.4
N2—C12—H12A107.2C12—N2—H2C108.4
C11—C12—H12A107.2C8—O1—C10116.8 (4)
C13—C12—H12A107.2C11—O2—H2B109.0
C14—C13—C12109.5 (3)Cl2—Fe1—Cl4109.81 (9)
C14—C13—H13A109.8Cl2—Fe1—Cl3108.14 (9)
C12—C13—H13A109.8Cl4—Fe1—Cl3109.65 (7)
C14—C13—H13B109.8Cl2—Fe1—Cl1109.82 (6)
C12—C13—H13B109.8Cl4—Fe1—Cl1108.41 (6)
H13A—C13—H13B108.2Cl3—Fe1—Cl1111.00 (8)
C13—C14—C15107.7 (4)H3B—O3—H3A109.5
C13—C14—C18112.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl50.962.103.023 (4)161
N2—H2C···Cl5i0.962.083.039 (4)173
O2—H2B···O30.852.002.799 (6)156
O3—H3B···Cl5ii0.852.713.070 (6)108

Symmetry codes: (i) −x+1, y+1/2, −z; (ii) −x, y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2725).

References

  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc.129, 5346–5347. [PubMed]
  • Qu, Z.-R., Chen, Z.-F., Zhang, J., Xiong, R.-G., Abrahams, B. F. & Xue, Z.-L. (2003). Organometallics 22, 2814–2816.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhao, H., Qu, Z.-R., Ye, Q., Abrahams, B. F., Wang, Y.-P., Liu, Z. G., Xue, Z.-L., Xiong, R.-G. & You, X.-Z. (2003). Chem. Mater.15, 4166–4168.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography