PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o778.
Published online 2010 March 6. doi:  10.1107/S1600536810008275
PMCID: PMC2983879

N-(2-Oxo-2H-chromen-3-yl)benzamide

Abstract

The phenyl ring in title mol­ecule, C16H11NO3, forms a dihedral angle of 7.69 (6)° with the fused ring system. The observed conformation is stabilized by intra­molecular N—H(...)O and C—H(...)O inter­actions. In the crystal, supra­molecular chains are formed along the b axis which are mediated by π–π inter­actions [centroid–centroid distance = 3.614 (2) Å].

Related literature

For the biological activity of imidazoles, see: Yohjiro et al. (1990 [triangle]). For the anti-inflammatory activity of the title compound, see: Maddi et al. (2007 [triangle]). Semi-empirical quantum chemical calculations were performed using MOPAC2009 Stewart (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o778-scheme1.jpg

Experimental

Crystal data

  • C16H11NO3
  • M r = 265.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o778-efi1.jpg
  • a = 12.519 (4) Å
  • b = 4.748 (3) Å
  • c = 21.167 (4) Å
  • β = 102.044 (3)°
  • V = 1230.5 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 K
  • 0.40 × 0.22 × 0.15 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.945, T max = 0.995
  • 13295 measured reflections
  • 2827 independent reflections
  • 2029 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.118
  • S = 1.11
  • 2827 reflections
  • 184 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2004 [triangle]); data reduction: SAINT and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810008275/hg2654sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008275/hg2654Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are thankful to the Department of Science and Technology (DST), and the SAIF, IIT Madras, India, for the X-ray data collection. MMJ is grateful to the University Grant Commission (Western Regional Office), India, for Minor Research Project F (No. 47-254/07).

supplementary crystallographic information

Comment

Oxazoles are very useful synthetic intermediates used for the generation of imidazoles that possess a wide spectrum of biological activities such as herbicidal, anti-bacterial, anti-fungal, etc. (Yohjiro et al., 1990). During attempts designed to synthesize oxazoles containing various substituents at different positions in the benzene ring, the title compound, (I), was obtained unexpectedly by the formation of a chromen derivative instead of the anticipated oxazole. Compound (I) is a known species and has been shown to be pharmaceutically important as it possesses anti-inflammatory activity (Maddi et al., 2007).

There is a twist in the molecule of (I), Fig. 1, so that the pendent benzene ring is not co-planar with the rest of the molecule. This is seen in the value of the O3–C10–C11–C12 torsion angle of -166.43 (15) °, and in the dihedral formed between the fused ring system and benzene ring of 7.69 (6) °. The overall conformation of the molecule is stabilised by intramolecular N–H···O and C–H···O interactions, Table 1, which close S(5) and S(6) hydrogen bond ring motifs, respectively. The most prominent feature of the crystal packing is the formation of supramolecular chains along the b axis mediated by π–π interactions between the ring centroids of the (O2,C1,C2,C7—C9) and (C2—C7)i rings of 3.614 (2) Å of translationally related molecules; symmetry operation i: x, 1+y, z.

Semi-empirical Quantum Chemical Calculations were performed on experimental structure using MOPAC2009 program (Stewart, 2009) to optimize the molecule with the Austin Model 1 (AM1) approximation, together with the restricted Hartree-Fock closed-shell wavefunction. Minimisations were terminated at an r.m.s. gradient of less than 1.0 kJ mol-1 Å-1. These calculations gave a heat of formation = -213.437 kJ for (I). The ionization potential, dipole moment and self consistency field (SCF) factor were calculated as 9.033 eV, 1.798 Debye and 73, respectively.

Experimental

A mixture of orthohydrothoxy benzaldehyde (0.25 mol), benzoyl amino acetic acid (0.25 mol), acetyl acetate (0.30 mol), and anhydrous sodium acetate (0.25 mol) were taken in a 500 ml round bottom flask and heated on an electric hot plate with constant stirring. After complete liquefaction, the flask was transferred to a sand bath and further heated for 2 h. Ethanol (100 ml) was added slowly to the flask and the mixture was allowed to stand overnight. The crystalline product obtained was filtered with ice-cold alcohol and then with boiling water. The crude product was crystallised from ethanol (95%) to obtain the final product (75 % yield, m.pt. 432 K). The colorless crystals were obtained by slow evaporation from an ethanol solution.

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(parent atom). The position of the N–H atom was refined with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
Fig. 2.
A supramolecular chain aligned along the b axis in (I), mediated by π–π interactions (purple dashed lines). Colour code: O, red; N, blue; C, grey; and H, green.

Crystal data

C16H11NO3F(000) = 552
Mr = 265.26Dx = 1.432 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3699 reflections
a = 12.519 (4) Åθ = 2.3–29.6°
b = 4.748 (3) ŵ = 0.10 mm1
c = 21.167 (4) ÅT = 293 K
β = 102.044 (3)°Block, colourless
V = 1230.5 (9) Å30.40 × 0.22 × 0.15 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer2827 independent reflections
Radiation source: fine-focus sealed tube2029 reflections with I > 2σ(I)
graphiteRint = 0.025
ω and [var phi] scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −16→15
Tmin = 0.945, Tmax = 0.995k = −6→5
13295 measured reflectionsl = −27→27

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.11w = 1/[σ2(Fo2) + (0.0491P)2 + 0.2124P] where P = (Fo2 + 2Fc2)/3
2827 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = −0.18 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.57658 (10)0.4385 (3)0.56046 (6)0.0705 (4)
O20.69047 (9)0.1338 (2)0.61603 (5)0.0526 (3)
O30.85472 (10)0.6200 (3)0.43753 (6)0.0667 (4)
N10.70508 (10)0.5787 (3)0.48003 (6)0.0443 (3)
H1N0.6366 (8)0.619 (4)0.4767 (8)0.053*
C10.66406 (13)0.3252 (3)0.56770 (7)0.0469 (4)
C20.78915 (12)−0.0059 (3)0.62787 (7)0.0426 (3)
C30.80701 (14)−0.1960 (3)0.67819 (7)0.0534 (4)
H30.7545−0.22550.70270.064*
C40.90379 (15)−0.3405 (4)0.69126 (8)0.0555 (4)
H40.9174−0.46880.72520.067*
C50.98102 (14)−0.2972 (4)0.65453 (8)0.0552 (4)
H51.0463−0.39740.66350.066*
C60.96208 (13)−0.1070 (3)0.60475 (8)0.0509 (4)
H61.0148−0.07930.58020.061*
C70.86511 (12)0.0452 (3)0.59038 (7)0.0414 (3)
C80.84018 (12)0.2473 (3)0.53927 (7)0.0440 (4)
H80.89090.28630.51400.053*
C90.74390 (12)0.3800 (3)0.52784 (6)0.0403 (3)
C100.76069 (13)0.6840 (3)0.43656 (7)0.0440 (4)
C110.70075 (12)0.8878 (3)0.38827 (7)0.0408 (3)
C120.60296 (13)1.0138 (3)0.39149 (7)0.0500 (4)
H120.56840.96850.42500.060*
C130.55600 (14)1.2065 (4)0.34538 (8)0.0579 (4)
H130.49011.29110.34810.069*
C140.60574 (15)1.2743 (4)0.29565 (8)0.0584 (5)
H140.57381.40470.26460.070*
C150.70244 (15)1.1497 (4)0.29178 (8)0.0590 (5)
H150.73601.19450.25780.071*
C160.75030 (14)0.9590 (3)0.33763 (7)0.0510 (4)
H160.81650.87650.33480.061*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0528 (7)0.0950 (10)0.0687 (8)0.0157 (7)0.0238 (6)0.0260 (7)
O20.0523 (7)0.0612 (7)0.0488 (6)0.0031 (5)0.0209 (5)0.0136 (5)
O30.0563 (7)0.0819 (9)0.0682 (8)0.0137 (6)0.0275 (6)0.0313 (7)
N10.0458 (7)0.0477 (7)0.0413 (7)−0.0018 (6)0.0135 (6)0.0049 (5)
C10.0461 (9)0.0543 (9)0.0415 (8)−0.0016 (7)0.0118 (6)0.0042 (7)
C20.0472 (8)0.0423 (8)0.0390 (7)−0.0038 (6)0.0106 (6)−0.0016 (6)
C30.0634 (10)0.0557 (9)0.0434 (8)−0.0038 (8)0.0167 (7)0.0066 (7)
C40.0685 (11)0.0486 (9)0.0471 (9)−0.0004 (8)0.0063 (8)0.0074 (7)
C50.0551 (10)0.0509 (9)0.0572 (10)0.0028 (8)0.0064 (8)0.0012 (8)
C60.0508 (9)0.0525 (9)0.0512 (9)−0.0005 (7)0.0149 (7)−0.0009 (7)
C70.0491 (8)0.0388 (7)0.0373 (7)−0.0063 (6)0.0112 (6)−0.0043 (6)
C80.0504 (9)0.0449 (8)0.0401 (7)−0.0046 (7)0.0175 (6)−0.0009 (6)
C90.0478 (8)0.0399 (7)0.0344 (7)−0.0063 (6)0.0115 (6)−0.0014 (6)
C100.0487 (9)0.0443 (8)0.0407 (8)−0.0043 (7)0.0130 (6)0.0005 (6)
C110.0474 (8)0.0375 (7)0.0376 (7)−0.0066 (6)0.0090 (6)−0.0024 (6)
C120.0514 (9)0.0547 (9)0.0462 (8)−0.0042 (8)0.0157 (7)0.0005 (7)
C130.0512 (10)0.0578 (10)0.0628 (10)0.0063 (8)0.0075 (8)−0.0003 (8)
C140.0706 (12)0.0501 (9)0.0506 (9)0.0028 (8)0.0037 (8)0.0078 (8)
C150.0740 (12)0.0572 (10)0.0485 (9)0.0024 (9)0.0191 (8)0.0113 (8)
C160.0570 (9)0.0527 (9)0.0463 (8)0.0035 (8)0.0177 (7)0.0036 (7)

Geometric parameters (Å, °)

O1—C11.2009 (19)C6—H60.9300
O2—C11.3567 (18)C7—C81.431 (2)
O2—C21.3783 (18)C8—C91.336 (2)
O3—C101.2118 (18)C8—H80.9300
N1—C101.3596 (19)C10—C111.492 (2)
N1—C91.3947 (19)C11—C121.377 (2)
N1—H1N0.867 (9)C11—C161.388 (2)
C1—C91.460 (2)C12—C131.377 (2)
C2—C31.378 (2)C12—H120.9300
C2—C71.381 (2)C13—C141.369 (3)
C3—C41.369 (2)C13—H130.9300
C3—H30.9300C14—C151.365 (2)
C4—C51.377 (2)C14—H140.9300
C4—H40.9300C15—C161.371 (2)
C5—C61.370 (2)C15—H150.9300
C5—H50.9300C16—H160.9300
C6—C71.391 (2)
C1—O2—C2121.85 (12)C9—C8—H8120.0
C10—N1—C9126.13 (13)C7—C8—H8120.0
C10—N1—H1N120.0 (11)C8—C9—N1127.93 (14)
C9—N1—H1N113.5 (11)C8—C9—C1120.79 (13)
O1—C1—O2117.93 (14)N1—C9—C1111.28 (13)
O1—C1—C9124.25 (14)O3—C10—N1121.95 (14)
O2—C1—C9117.81 (14)O3—C10—C11121.49 (13)
O2—C2—C3116.77 (14)N1—C10—C11116.55 (14)
O2—C2—C7120.63 (13)C12—C11—C16118.54 (14)
C3—C2—C7122.60 (15)C12—C11—C10124.99 (14)
C4—C3—C2118.57 (16)C16—C11—C10116.44 (14)
C4—C3—H3120.7C11—C12—C13120.41 (15)
C2—C3—H3120.7C11—C12—H12119.8
C3—C4—C5120.47 (15)C13—C12—H12119.8
C3—C4—H4119.8C14—C13—C12120.40 (17)
C5—C4—H4119.8C14—C13—H13119.8
C6—C5—C4120.23 (16)C12—C13—H13119.8
C6—C5—H5119.9C15—C14—C13119.71 (16)
C4—C5—H5119.9C15—C14—H14120.1
C5—C6—C7120.90 (15)C13—C14—H14120.1
C5—C6—H6119.5C14—C15—C16120.40 (16)
C7—C6—H6119.5C14—C15—H15119.8
C2—C7—C6117.21 (14)C16—C15—H15119.8
C2—C7—C8118.97 (14)C15—C16—C11120.53 (16)
C6—C7—C8123.82 (14)C15—C16—H16119.7
C9—C8—C7119.94 (14)C11—C16—H16119.7
C2—O2—C1—O1−179.90 (14)C10—N1—C9—C1177.37 (14)
C2—O2—C1—C90.1 (2)O1—C1—C9—C8179.34 (16)
C1—O2—C2—C3−179.91 (13)O2—C1—C9—C8−0.7 (2)
C1—O2—C2—C70.0 (2)O1—C1—C9—N1−0.5 (2)
O2—C2—C3—C4179.59 (14)O2—C1—C9—N1179.48 (12)
C7—C2—C3—C4−0.3 (2)C9—N1—C10—O3−3.4 (2)
C2—C3—C4—C5−0.4 (2)C9—N1—C10—C11177.89 (13)
C3—C4—C5—C60.5 (3)O3—C10—C11—C12−166.43 (15)
C4—C5—C6—C70.0 (2)N1—C10—C11—C1212.3 (2)
O2—C2—C7—C6−179.11 (13)O3—C10—C11—C1611.7 (2)
C3—C2—C7—C60.7 (2)N1—C10—C11—C16−169.62 (14)
O2—C2—C7—C80.5 (2)C16—C11—C12—C13−0.2 (2)
C3—C2—C7—C8−179.65 (14)C10—C11—C12—C13177.90 (14)
C5—C6—C7—C2−0.6 (2)C11—C12—C13—C140.3 (3)
C5—C6—C7—C8179.82 (14)C12—C13—C14—C150.1 (3)
C2—C7—C8—C9−1.0 (2)C13—C14—C15—C16−0.5 (3)
C6—C7—C8—C9178.53 (14)C14—C15—C16—C110.6 (3)
C7—C8—C9—N1−179.05 (13)C12—C11—C16—C15−0.3 (2)
C7—C8—C9—C11.1 (2)C10—C11—C16—C15−178.48 (14)
C10—N1—C9—C8−2.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1n···O10.867 (11)2.236 (16)2.659 (2)110.0 (14)
C8—H8···O30.932.242.822 (3)120

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2654).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2004). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Maddi, V., Mamledesai, S. N., Satyanarayana, D. & Swamy, S. (2007). Indian J. Pharm. Sci.69, 847–849.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stewart, J. P. (2009). MOPAC2009. Stewart Computational Chemistry. Available from: http://OpenMOPAC.net.
  • Westrip, S. P. (2010). publCIF In preparation.
  • Yohjiro, H., Hiasao, S., Nobuyuki, K., Takuo, W. & Kazukuki, T. (1990). US Patent No. 4 902 705.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography