PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o769.
Published online 2010 March 6. doi:  10.1107/S1600536810008007
PMCID: PMC2983877

3-Bromo-4-dibenzyl­amino-5-methoxy­furan-2(5H)-one

Abstract

In the the title compound, C19H18BrNO3, the furan­one ring is almost planar [maximum atomic deviation = 0.019 (3) Å] and is nearly perpendicular to the two phenyl rings, making dihedral angles of 88.96 (17) and 87.71 (17)°. Inter­molecular C—H(...)O hydrogen bonding is present in the crystal structure.

Related literature

2(5H)-Furan­one is the simplest sub-unit of a large class of five-membered heterocyclic carbonyl compounds, see: Reva et al. (2008 [triangle]). The title compound is a derivative of 4-amino-2(5H)-furan­one. For the biological activity of 4-amino-2(5H)-furan­ones, see: Kimura et al. (2000 [triangle]); Tanoury et al. (2008 [triangle]). For the synthesis, see: Toshiyuki & Yoshikazu (1955 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o769-scheme1.jpg

Experimental

Crystal data

  • C19H18BrNO3
  • M r = 388.25
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o769-efi1.jpg
  • a = 15.756 (2) Å
  • b = 11.2475 (14) Å
  • c = 19.779 (3) Å
  • V = 3505.2 (8) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 2.36 mm−1
  • T = 298 K
  • 0.23 × 0.20 × 0.16 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.613, T max = 0.704
  • 18029 measured reflections
  • 3429 independent reflections
  • 2028 reflections with I > 2σ(I)
  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.089
  • S = 1.00
  • 3429 reflections
  • 218 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810008007/xu2724sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008007/xu2724Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported by the National Natural Science Foundation of China (grant No. 20772035) and the Natural Science Foundation of Guangdong Province, China (grant No. 5300082).

supplementary crystallographic information

Comment

2(5H)-Furanone is a simplest sub-unit of a large class of five membered heterocyclic carbonyl compounds (Reva et al., 2008). At the same time, 4-amino-2(5H)-furanone is an attractive moiety in chemical, pharmaceutical and agrochemical research. Many 4-amino-2(5H)-furanones have been patented as prodrugs or insecticides and herbicides (Kimura et al., 2000; Tanoury et al., 2008).

Attracted by versatile 4-amino-2(5H)-furanones, we synthesized the title compound with 3,4-dibromo-5-methoxyfuran-2(5H)-one and dibenzylamine in the presence of potassium fluoride via the tandem asymmetric Michael addition-elimination reaction. With 2(5H)-furanone moiety and polyfunctional groups (carboxyl, amino, halo), the title compound is expected to be a biologically active product.

The structure of the title compound (I) is illustrated in Fig. 1. The title compound contains a five-membered furanone ring and two six-membered benzene rings. The furanone ring is approximately planar.

Experimental

The precursor 3,4-dibromo-5-methoxyfuran-2(5H)-furanone was prepared according to the literature procedure (Toshiyuki & Yoshikazu, 1955).

After the mixture of dibenzylamine (2 mmol) and potassium fluoride (6 mmol) was dissolved in absolute tetrahydrofuran (2 ml) under nitrogen atmosphere, dichloromethane solution of 3,4-dibromo-5-methoxyfuran-2(5H)-furanone (2.0 mmol) was added. The residual liquid was dissolved in dichloromethane. The reaction was carried out under the stirring at room temperature for 48 h. Once the reaction was complete, the solvents were removed under reduced pressure. The residual solid was dissolved in dichloromethane. Then the combined organic layers from extraction were concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography with the gradient mixture of petroleum ether and ethyl acetate to give the product yielding (I) 0.6224 g (80.2%).

Refinement

H atoms were positioned in calculated positions with C—H = 0.93-0.98 Å and were refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others.

Figures

Fig. 1.
View of the title compound showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level.

Crystal data

C19H18BrNO3F(000) = 1584
Mr = 388.25Dx = 1.471 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2798 reflections
a = 15.756 (2) Åθ = 2.5–21.2°
b = 11.2475 (14) ŵ = 2.36 mm1
c = 19.779 (3) ÅT = 298 K
V = 3505.2 (8) Å3Block, colourless
Z = 80.23 × 0.20 × 0.16 mm

Data collection

Bruker APEXII area-detector diffractometer3429 independent reflections
Radiation source: fine-focus sealed tube2028 reflections with I > 2σ(I)
graphiteRint = 0.054
[var phi] and ω scanθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −19→18
Tmin = 0.613, Tmax = 0.704k = −13→13
18029 measured reflectionsl = −10→24

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0297P)2 + 1.9449P] where P = (Fo2 + 2Fc2)/3
3429 reflections(Δ/σ)max = 0.002
218 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.27 e Å3

Special details

Experimental. 1H NMR (400 MHz, CDCl3, TMS): 3.52 (3H, s, CH, CH3), 4.53 (2H, d, CH, CH2), 4.90 (2H, d, CH, CH2), 5.74 (1H, s, CH), 7.21-7.42 (10H, m, CH, Ar-H);
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.09981 (2)1.14889 (3)0.35209 (2)0.07708 (16)
C90.24254 (19)0.8956 (3)0.36299 (14)0.0447 (7)
C50.29710 (17)0.8590 (3)0.16073 (14)0.0440 (7)
C80.25104 (19)0.9658 (3)0.29832 (14)0.0506 (8)
H8A0.24231.04930.30830.061*
H8B0.30850.95700.28150.061*
C60.3624 (2)0.7779 (3)0.15594 (17)0.0689 (10)
H60.35980.70750.18050.083*
C70.22153 (18)0.8294 (2)0.20442 (15)0.0495 (8)
H7A0.17540.80270.17570.059*
H7B0.23650.76440.23440.059*
C100.1799 (2)0.8127 (3)0.37322 (17)0.0618 (9)
H100.13950.79970.33980.074*
C40.3031 (2)0.9608 (3)0.12329 (18)0.0674 (10)
H40.25981.01680.12520.081*
C140.3011 (2)0.9133 (3)0.41324 (17)0.0625 (9)
H140.34360.96960.40720.075*
C110.1764 (2)0.7486 (3)0.43241 (19)0.0750 (11)
H110.13350.69280.43880.090*
C130.2981 (3)0.8493 (4)0.47231 (18)0.0828 (12)
H130.33850.86230.50580.099*
C120.2358 (3)0.7666 (4)0.48199 (18)0.0806 (11)
H120.23370.72300.52190.097*
C20.4371 (3)0.9017 (4)0.0793 (2)0.0818 (12)
H20.48440.91680.05250.098*
C10.4314 (2)0.7997 (4)0.1153 (2)0.0858 (12)
H10.47470.74380.11250.103*
C30.3730 (3)0.9814 (4)0.0826 (2)0.0840 (12)
H30.37601.05090.05730.101*
N10.19202 (15)0.9304 (2)0.24524 (12)0.0448 (6)
O10.08872 (13)0.95812 (19)0.12416 (10)0.0558 (6)
O3−0.06901 (14)1.1434 (2)0.26344 (12)0.0691 (6)
O2−0.02363 (12)0.99727 (18)0.19541 (10)0.0532 (5)
C160.05326 (18)0.9313 (3)0.18643 (14)0.0434 (7)
H160.04260.84570.19040.052*
C180.11283 (18)0.9735 (2)0.24190 (14)0.0400 (7)
C20−0.0134 (2)1.0746 (3)0.24854 (16)0.0497 (8)
C190.06917 (18)1.0562 (2)0.27812 (14)0.0446 (7)
C150.0499 (3)0.8984 (4)0.07008 (18)0.0898 (13)
H15A0.05180.81420.07800.135*
H15B0.07940.91660.02890.135*
H15C−0.00820.92350.06630.135*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0724 (3)0.0756 (3)0.0833 (3)0.0017 (2)−0.0117 (2)−0.0326 (2)
C90.0377 (17)0.0467 (16)0.0498 (19)0.0101 (14)−0.0009 (15)−0.0007 (14)
C50.0398 (17)0.0478 (17)0.0445 (18)0.0011 (15)−0.0038 (13)0.0051 (15)
C80.0364 (17)0.0554 (19)0.060 (2)−0.0035 (15)−0.0035 (15)0.0059 (16)
C60.059 (2)0.074 (2)0.073 (2)0.0192 (19)0.0072 (19)0.026 (2)
C70.0452 (18)0.0435 (18)0.060 (2)0.0056 (14)0.0007 (15)0.0084 (15)
C100.053 (2)0.075 (2)0.057 (2)−0.0080 (18)−0.0030 (16)0.0139 (18)
C40.060 (2)0.057 (2)0.085 (3)0.0059 (17)0.0155 (19)0.020 (2)
C140.061 (2)0.068 (2)0.059 (2)0.0024 (18)−0.0100 (18)−0.0032 (19)
C110.079 (3)0.081 (3)0.066 (2)−0.006 (2)0.005 (2)0.017 (2)
C130.088 (3)0.102 (3)0.058 (3)0.008 (3)−0.022 (2)−0.005 (2)
C120.097 (3)0.091 (3)0.054 (2)0.015 (3)0.002 (2)0.019 (2)
C20.059 (2)0.103 (3)0.083 (3)−0.005 (2)0.023 (2)0.006 (3)
C10.060 (2)0.102 (3)0.095 (3)0.026 (2)0.024 (2)0.017 (3)
C30.080 (3)0.075 (3)0.098 (3)−0.007 (2)0.026 (2)0.030 (2)
N10.0362 (14)0.0476 (14)0.0506 (15)−0.0009 (12)−0.0020 (11)0.0026 (12)
O10.0549 (13)0.0668 (14)0.0457 (13)−0.0002 (11)0.0038 (11)0.0049 (11)
O30.0516 (13)0.0647 (14)0.0909 (18)0.0162 (12)0.0008 (12)−0.0133 (13)
O20.0393 (12)0.0610 (13)0.0594 (14)0.0064 (10)−0.0041 (10)−0.0071 (11)
C160.0411 (17)0.0447 (17)0.0442 (18)−0.0011 (14)0.0014 (14)0.0013 (14)
C180.0381 (17)0.0366 (16)0.0452 (17)−0.0082 (13)0.0016 (13)0.0085 (13)
C200.048 (2)0.0440 (18)0.057 (2)−0.0009 (16)0.0058 (16)0.0004 (16)
C190.0427 (17)0.0406 (16)0.0506 (18)−0.0044 (14)−0.0017 (14)−0.0012 (14)
C150.086 (3)0.133 (4)0.050 (2)−0.001 (3)0.004 (2)−0.015 (2)

Geometric parameters (Å, °)

Br1—C191.860 (3)C11—H110.9300
C9—C141.371 (4)C13—C121.366 (5)
C9—C101.372 (4)C13—H130.9300
C9—C81.509 (4)C12—H120.9300
C5—C41.367 (4)C2—C31.351 (5)
C5—C61.378 (4)C2—C11.353 (5)
C5—C71.508 (4)C2—H20.9300
C8—N11.458 (3)C1—H10.9300
C8—H8A0.9700C3—H30.9300
C8—H8B0.9700N1—C181.340 (3)
C6—C11.374 (5)O1—C161.386 (3)
C6—H60.9300O1—C151.404 (4)
C7—N11.469 (3)O3—C201.206 (3)
C7—H7A0.9700O2—C201.374 (3)
C7—H7B0.9700O2—C161.432 (3)
C10—C111.376 (4)C16—C181.520 (4)
C10—H100.9300C16—H160.9800
C4—C31.383 (5)C18—C191.361 (4)
C4—H40.9300C20—C191.441 (4)
C14—C131.373 (5)C15—H15A0.9600
C14—H140.9300C15—H15B0.9600
C11—C121.371 (5)C15—H15C0.9600
C14—C9—C10118.4 (3)C13—C12—H12120.3
C14—C9—C8118.6 (3)C11—C12—H12120.3
C10—C9—C8123.0 (3)C3—C2—C1119.1 (4)
C4—C5—C6117.7 (3)C3—C2—H2120.4
C4—C5—C7123.4 (3)C1—C2—H2120.4
C6—C5—C7118.9 (3)C2—C1—C6120.8 (4)
N1—C8—C9114.3 (2)C2—C1—H1119.6
N1—C8—H8A108.7C6—C1—H1119.6
C9—C8—H8A108.7C2—C3—C4120.8 (4)
N1—C8—H8B108.7C2—C3—H3119.6
C9—C8—H8B108.7C4—C3—H3119.6
H8A—C8—H8B107.6C18—N1—C8122.1 (2)
C1—C6—C5120.8 (3)C18—N1—C7123.2 (2)
C1—C6—H6119.6C8—N1—C7113.9 (2)
C5—C6—H6119.6C16—O1—C15113.4 (2)
N1—C7—C5113.2 (2)C20—O2—C16108.9 (2)
N1—C7—H7A108.9O1—C16—O2109.8 (2)
C5—C7—H7A108.9O1—C16—C18108.9 (2)
N1—C7—H7B108.9O2—C16—C18105.7 (2)
C5—C7—H7B108.9O1—C16—H16110.7
H7A—C7—H7B107.7O2—C16—H16110.7
C9—C10—C11120.7 (3)C18—C16—H16110.7
C9—C10—H10119.6N1—C18—C19133.8 (3)
C11—C10—H10119.6N1—C18—C16119.9 (2)
C5—C4—C3120.7 (3)C19—C18—C16106.3 (2)
C5—C4—H4119.7O3—C20—O2120.5 (3)
C3—C4—H4119.7O3—C20—C19130.5 (3)
C9—C14—C13121.2 (3)O2—C20—C19109.0 (3)
C9—C14—H14119.4C18—C19—C20109.9 (3)
C13—C14—H14119.4C18—C19—Br1131.8 (2)
C12—C11—C10120.2 (4)C20—C19—Br1118.2 (2)
C12—C11—H11119.9O1—C15—H15A109.5
C10—C11—H11119.9O1—C15—H15B109.5
C12—C13—C14120.0 (4)H15A—C15—H15B109.5
C12—C13—H13120.0O1—C15—H15C109.5
C14—C13—H13120.0H15A—C15—H15C109.5
C13—C12—C11119.4 (4)H15B—C15—H15C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C16—H16···O3i0.982.493.396 (4)154

Symmetry codes: (i) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2724).

References

  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kimura, Y., Mizuno, T., Kawano, T., Okada, K. & Shimad, A. (2000). Phytochemistry, 53, 829–831. [PubMed]
  • Reva, I., Nowak, M. J., Lapinski, L. & Fausto, R. (2008). Chem. Phys. Lett.452, 20–28.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tanoury, G. J., Chen, M. Z., Dong, Y., Forslund, R. E. & Magdziak, D. (2008). Org. Lett.10, 185–188. [PubMed]
  • Toshiyuki, S. & Yoshikazu, H. (1955). Nippon Kagaku Kaishi, 58, 692–693.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography