PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m406–m407.
Published online 2010 March 13. doi:  10.1107/S1600536810007725
PMCID: PMC2983872

Bis[diamminesilver(I)] 5-nitro­iso­phthalate monohydrate

Abstract

In the title compound, [Ag(NH3)2]2(C8H3NO6)·H2O, the cations have an almost linear coordination geometry with two ammine ligands and inter­act with the water mol­ecules [Ag(...)Owater = 2.725 (4) and 2.985 (4) Å]. In the crystal, N—H(...)O and O—H(...)O hydrogen bonds, combined with weak (lone pair)(...)π [O(...)centroid distance = 3.401 (4) Å] and π–π stacking [centroid–centroid distance = 3.975 (3) Å] inter­actions, stabilize the three-dimensional supra­molecular network.

Related literature

For general background to crystal engineering and supra­molecular chemistry, see: Batten & Robson (1998 [triangle]); Blake et al. (1999 [triangle]); Yaghi et al. (2003 [triangle]). For general background to non-covalent inter­actions, see: Biswas et al. (2009 [triangle]); Egli & Arkhel (2007 [triangle]); Jeffrey et al. (1985 [triangle]); Mooibroek et al. (2006 [triangle]); Nishio et al. (1998 [triangle]); Rahman et al. (2003 [triangle]). For related structures, see: Sun, Luo, Huang et al. (2009 [triangle]); Sun, Luo, Xu et al. (2009 [triangle]); Sun, Luo, Zhang et al. (2009 [triangle]); You & Zhu (2004 [triangle]); You et al. (2004 [triangle]); Zheng et al. (2002 [triangle], 2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m406-scheme1.jpg

Experimental

Crystal data

  • [Ag(NH3)2]2(C8H3NO6)·H2O
  • M r = 511.01
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m406-efi1.jpg
  • a = 7.692 (2) Å
  • b = 12.229 (3) Å
  • c = 16.379 (4) Å
  • β = 102.100 (4)°
  • V = 1506.5 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.64 mm−1
  • T = 298 K
  • 0.11 × 0.10 × 0.08 mm

Data collection

  • Oxford Diffraction Gemini S Ultra diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006 [triangle]) T min = 0.760, T max = 0.817
  • 7118 measured reflections
  • 2627 independent reflections
  • 2500 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.114
  • S = 1.22
  • 2627 reflections
  • 204 parameters
  • H-atom parameters constrained
  • Δρmax = 0.97 e Å−3
  • Δρmin = −0.98 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]) and SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810007725/hy2282sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007725/hy2282Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Renaissance in crystal engineering and supramolecular chemistry is due to the diverse and aesthetic structural topologies and potential use in optical, electrical, catalytic, gas storage and even drug delivery as functional solid materials (Batten & Robson, 1998; Blake et al., 1999; Yaghi et al., 2003). In addition to coordination bonds, noncovalent interactions such as hydrogen bond, π–π stacking, C—H···π, anion···π, cation···π and lone-pair(lp)···π interactions between molecules also play a pivotal role in the stability of molecule packing and govern the physicochemical properties of molecular systems in the condensed phase (Mooibroek et al., 2006; Nishio et al., 1998). Although AgI ion under ammoniacal conditions can form {[Ag(NH3)2]+}n (n = 1 or 2) (Zheng et al., 2007), which can be stabilized by supramolecular interactions, only limited [Ag(NH3)2]-containing compounds were documented due to the weak Ag—Nammine coordination bond (You et al., 2004; Zheng et al., 2002). Recently, we have pursued systematic investigations about the self-assembly of AgI ion with different bipodal N-donor ligands and multicarboxylates under ammoniacal conditions (Sun, Luo, Huang et al., 2009; Sun, Luo, Xu et al., 2009; Sun, Luo, Zhang et al., 2009). In an attempt to exploit the AgI/aminopyrazine/H2nipa system (H2nipa = 5-nitroisophthalic acid), we surprisingly obtained the title compound.

The title compound comprises two [Ag(NH3)2]+ cations, one nipa anion and one uncoordinated water molecule in the asymmetric unit (Fig. 1). Each AgI ion is in an almost linear coordination environment, coordinated by two ammonia molecules, forming a cationic [Ag(NH3)2]+ monomer. The Ag—N bond lengths range from 2.088 (4) to 2.112 (5) Å (Table 1), which are comparable to the corresponding values observed in other silver(I) compounds (You & Zhu, 2004). The N1—Ag1—N2 [169.90 (19)°] and N3—Ag2—N4 [174.05 (16)°] angles deviate from the ideal 180°, as a result of weak interactions between the AgI ions and water molecules. The Ag1···O1Wiii and Ag2···O1Wv distances are 2.725 (4) and 2.985 (4) Å, respectively, which suggest anything other than a secondary interaction [symmetry codes: (iii) x, y+1, z; (v) x+1, -y+1/2, z+1/2]. The shortest centroid–centroid distance between neighboring phenyl rings of nipa anions is 3.975 (3) Å, with a large slippage of 2.129 Å, which suggests the existence of a weak offset π–π stacking interaction. On the other hand, one striking feature of the title compound is an lp···π interaction (Biswas et al., 2009; Egli & Arkhel, 2007). A weak lp···π interaction is observed between the nitro O5 atom and phenyl ring of the nipa anion. The distance between the ring centroid and O5 atom is 3.401 (4) Å. This lp(O)···π interaction distance falls in the range of few experimental examples so far reported (Rahman et al., 2003). The angle θ (which corresponds to the angle between the O atom, the ring centroid and the aromatic plane) is 83.7 (3)°, reflecting a significant lp···π interaction. Every two nipa anions arrange in a parallel manner, forming a dimer through lp(O)···π interactions, and the neighboring dimers pack togther through weak π–π stacking interactions into columns running along the a axis (Fig. 2).

One of the ammonia molecules forms a bifurcated hydrogen bond (Jeffrey et al., 1985) [N2–H2C···O1Wii and N2–H2C···O6, symmetry code: (ii) -x, -y+1, -z+1]. In addition, the [Ag(NH3)2]+ cations, nipa anions and water molecules interact via N—H···O and O—H···O hydrogen bonds (Table 2) [average N···O = 3.010 (6), O···O = 2.746 (5) Å] to consolidate the three-dimensional supramolecular network (Fig. 3).

Experimental

All reagents and solvents were used as obtained commercially without further purification. A mixture of Ag2O (116 mg, 0.5 mmol), 2-aminopyrazine (95 mg, 1 mmol) and H2nipa (211 mg, 1 mmol) were stirred in CH3CN/H2O mixed solvent (8 ml, v/v = 1:1). Then aqueous NH3 solution (25%) was dropped into the mixture to give a clear solution under ultrasonic treatment. The resultant solution was allowed to evaporate slowly in darkness at room temperature for several days to give colorless crystals of the title compound (yield 61%). They were washed with a small volume of cold CH3CN and diethyl ether. Analysis calculated for C8H17Ag2N5O7: C 18.80, H 3.35, N 13.71%; found: C 18.86, H 3.39, N 13.64%.

Refinement

C- and N-bound H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93 and N—H = 0.89 Å and with Uiso(H) = 1.2Ueq(C,N). H atoms of water molecule were located in a difference Fourier map and refined as riding, with O—H = 0.85 Å and Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.
Molecular structure of the title compound, showing the coordination environment around the AgI center. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A ball-stick perspective view of the lp(O)···π (green dashed lines) and π–π (blue dashed lines) interactions in the title compound. H atoms and [Ag(NH3)2]+ cations have been omitted for clarity.
Fig. 3.
Perspective views of the three-dimensional supramolecular network incorporating N—H···O and O—H···O hydrogen bonds (dashed lines) viewed along two different directions.

Crystal data

[Ag(NH3)2]2(C8H3NO6)·H2OF(000) = 1000
Mr = 511.01Dx = 2.253 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4729 reflections
a = 7.692 (2) Åθ = 5.1–57.2°
b = 12.229 (3) ŵ = 2.64 mm1
c = 16.379 (4) ÅT = 298 K
β = 102.100 (4)°Block, colorless
V = 1506.5 (7) Å30.11 × 0.10 × 0.08 mm
Z = 4

Data collection

Oxford Diffraction Gemini S Ultra diffractometer2627 independent reflections
Radiation source: sealed tube2500 reflections with I > 2σ(I)
graphiteRint = 0.036
Detector resolution: 16.1903 pixels mm-1θmax = 25.0°, θmin = 2.1°
ω scansh = −9→9
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006)k = −8→14
Tmin = 0.760, Tmax = 0.817l = −17→19
7118 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.114w = 1/[σ2(Fo2) + (0.0451P)2 + 2.1461P] where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max < 0.001
2627 reflectionsΔρmax = 0.97 e Å3
204 parametersΔρmin = −0.98 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0264 (13)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ag10.01233 (6)0.87015 (4)0.39354 (3)0.0561 (2)
Ag20.56988 (5)0.37352 (3)0.78293 (3)0.0444 (2)
C10.1106 (5)0.4687 (4)0.4096 (3)0.0272 (9)
C20.1513 (6)0.3606 (4)0.4283 (3)0.0277 (9)
H20.09550.30650.39220.033*
C30.2729 (5)0.3307 (4)0.4993 (3)0.0273 (9)
C40.3475 (6)0.4110 (4)0.5543 (3)0.0294 (10)
H40.42780.39290.60320.035*
C50.3022 (6)0.5176 (4)0.5362 (3)0.0281 (9)
C60.1878 (6)0.5481 (4)0.4639 (3)0.0294 (10)
H60.16310.62160.45210.035*
C7−0.0153 (6)0.4982 (4)0.3292 (3)0.0308 (10)
C80.3273 (6)0.2131 (4)0.5152 (3)0.0293 (10)
N1−0.1928 (7)0.8046 (4)0.3002 (3)0.0544 (12)
H1A−0.18670.83330.25090.065*
H1B−0.29770.82050.31200.065*
H1C−0.18050.73230.29830.065*
N20.2262 (6)0.9066 (4)0.4929 (3)0.0499 (11)
H2A0.24410.97860.49540.060*
H2B0.32390.87330.48460.060*
H2C0.20110.88350.54060.060*
N30.7101 (6)0.2725 (4)0.7167 (3)0.0411 (10)
H3A0.75760.21710.74900.049*
H3B0.79620.31080.70120.049*
H3C0.63640.24660.67160.049*
N40.4096 (5)0.4767 (4)0.8378 (2)0.0395 (10)
H4A0.47370.53330.86150.047*
H4B0.36770.43990.87640.047*
H4C0.31920.50080.79880.047*
N50.3862 (6)0.6021 (4)0.5942 (2)0.0358 (9)
O1−0.0137 (5)0.5948 (3)0.3058 (2)0.0405 (8)
O1W−0.0469 (5)0.0861 (3)0.3572 (2)0.0502 (9)
H1WA−0.03150.08710.30730.060*
H1WB0.04740.11890.38130.060*
O2−0.1083 (5)0.4259 (3)0.2916 (2)0.0502 (10)
O30.2508 (5)0.1444 (3)0.4657 (3)0.0494 (10)
O40.4452 (5)0.1927 (3)0.5764 (2)0.0412 (8)
O50.4957 (5)0.5735 (3)0.6553 (2)0.0509 (10)
O60.3436 (6)0.6952 (3)0.5786 (2)0.0567 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag10.0498 (3)0.0475 (3)0.0734 (4)−0.00206 (19)0.0184 (2)−0.0061 (2)
Ag20.0446 (3)0.0460 (3)0.0402 (3)0.00187 (17)0.00340 (18)−0.00385 (17)
C10.027 (2)0.030 (2)0.025 (2)0.0008 (18)0.0062 (16)0.0021 (18)
C20.032 (2)0.026 (2)0.024 (2)−0.0037 (18)0.0049 (17)−0.0045 (17)
C30.024 (2)0.028 (2)0.030 (2)0.0005 (18)0.0057 (17)0.0014 (19)
C40.030 (2)0.031 (2)0.027 (2)0.0013 (19)0.0049 (17)0.0026 (19)
C50.030 (2)0.028 (2)0.027 (2)−0.0044 (19)0.0088 (17)−0.0030 (18)
C60.028 (2)0.029 (2)0.032 (2)0.0017 (19)0.0104 (18)0.0025 (19)
C70.030 (2)0.028 (3)0.034 (2)0.005 (2)0.0069 (18)0.006 (2)
C80.031 (2)0.027 (2)0.031 (2)0.0054 (19)0.0082 (19)0.0019 (19)
N10.061 (3)0.048 (3)0.055 (3)0.006 (2)0.016 (2)0.001 (2)
N20.052 (3)0.038 (3)0.062 (3)0.006 (2)0.015 (2)0.009 (2)
N30.038 (2)0.038 (2)0.043 (2)−0.0028 (19)−0.0014 (18)−0.0036 (19)
N40.039 (2)0.039 (2)0.039 (2)−0.0006 (19)0.0032 (17)0.0000 (19)
N50.042 (2)0.035 (2)0.031 (2)−0.0080 (19)0.0082 (18)−0.0020 (18)
O10.044 (2)0.0333 (19)0.0391 (19)0.0038 (16)−0.0021 (15)0.0113 (16)
O1W0.045 (2)0.059 (3)0.043 (2)0.0005 (19)0.0004 (16)−0.0007 (19)
O20.054 (2)0.037 (2)0.047 (2)−0.0080 (18)−0.0167 (17)0.0017 (18)
O30.060 (2)0.0287 (19)0.049 (2)0.0045 (17)−0.0119 (18)−0.0091 (17)
O40.0412 (18)0.0344 (19)0.0393 (18)0.0044 (15)−0.0112 (15)0.0000 (15)
O50.060 (2)0.046 (2)0.039 (2)−0.0077 (19)−0.0089 (17)−0.0042 (17)
O60.088 (3)0.027 (2)0.049 (2)0.002 (2)−0.001 (2)−0.0022 (17)

Geometric parameters (Å, °)

Ag1—N12.112 (5)C7—O11.243 (6)
Ag1—N22.105 (5)C8—O31.228 (6)
Ag2—N32.088 (4)C8—O41.229 (5)
Ag2—N42.094 (4)N1—H1A0.8900
Ag1—O1Wi2.725 (4)N1—H1B0.8900
Ag2—O1Wii2.985 (4)N1—H1C0.8900
C1—C61.367 (6)N2—H2A0.8900
C1—C21.378 (6)N2—H2B0.8900
C1—C71.505 (6)N2—H2C0.8900
C2—C31.380 (6)N3—H3A0.8900
C2—H20.9300N3—H3B0.8900
C3—C41.374 (6)N3—H3C0.8900
C3—C81.505 (6)N4—H4A0.8900
C4—C51.366 (6)N4—H4B0.8900
C4—H40.9300N4—H4C0.8900
C5—C61.370 (6)N5—O61.198 (6)
C5—N51.460 (6)N5—O51.217 (5)
C6—H60.9300O1W—H1WA0.8501
C7—O21.220 (6)O1W—H1WB0.8500
N2—Ag1—N1169.90 (19)O4—C8—C3117.8 (4)
N3—Ag2—N4174.05 (16)Ag1—N1—H1A109.5
N2—Ag1—O1Wi91.79 (15)Ag1—N1—H1B109.5
N1—Ag1—O1Wi98.31 (16)H1A—N1—H1B109.5
N3—Ag2—O1Wii74.69 (14)Ag1—N1—H1C109.5
N4—Ag2—O1Wii110.21 (14)H1A—N1—H1C109.5
C6—C1—C2119.3 (4)H1B—N1—H1C109.5
C6—C1—C7120.7 (4)Ag1—N2—H2A109.5
C2—C1—C7119.9 (4)Ag1—N2—H2B109.5
C1—C2—C3121.6 (4)H2A—N2—H2B109.5
C1—C2—H2119.2Ag1—N2—H2C109.5
C3—C2—H2119.2H2A—N2—H2C109.5
C4—C3—C2118.7 (4)H2B—N2—H2C109.5
C4—C3—C8120.4 (4)Ag2—N3—H3A109.5
C2—C3—C8120.9 (4)Ag2—N3—H3B109.5
C5—C4—C3119.1 (4)H3A—N3—H3B109.5
C5—C4—H4120.4Ag2—N3—H3C109.5
C3—C4—H4120.4H3A—N3—H3C109.5
C4—C5—C6122.4 (4)H3B—N3—H3C109.5
C4—C5—N5118.5 (4)Ag2—N4—H4A109.5
C6—C5—N5119.0 (4)Ag2—N4—H4B109.5
C1—C6—C5118.8 (4)H4A—N4—H4B109.5
C1—C6—H6120.6Ag2—N4—H4C109.5
C5—C6—H6120.6H4A—N4—H4C109.5
O2—C7—O1125.1 (4)H4B—N4—H4C109.5
O2—C7—C1118.0 (4)O6—N5—O5124.1 (4)
O1—C7—C1116.8 (4)O6—N5—C5118.1 (4)
O3—C8—O4124.7 (4)O5—N5—C5117.8 (4)
O3—C8—C3117.5 (4)H1WA—O1W—H1WB99.3

Symmetry codes: (i) x, y+1, z; (ii) x+1, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1iii0.851.962.807 (5)177
O1W—H1WB···O30.851.882.684 (5)156
N1—H1B···O4iv0.892.353.082 (6)140
N1—H1C···O10.892.102.905 (6)149
N2—H2A···O3i0.892.092.954 (6)164
N2—H2B···O4v0.892.363.218 (6)163
N2—H2C···O1Wiv0.892.283.059 (6)147
N2—H2C···O60.892.572.990 (6)110
N3—H3A···O2ii0.892.082.937 (6)163
N3—H3B···O1v0.892.062.930 (6)167
N3—H3C···O40.892.022.901 (5)173
N4—H4A···O4vi0.892.233.088 (6)163
N4—H4B···O3vii0.892.143.024 (6)176
N4—H4C···O2iv0.892.153.036 (5)175

Symmetry codes: (iii) −x, y−1/2, −z+1/2; (iv) −x, −y+1, −z+1; (i) x, y+1, z; (v) −x+1, −y+1, −z+1; (ii) x+1, −y+1/2, z+1/2; (vi) −x+1, y+1/2, −z+3/2; (vii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2282).

References

  • Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed.37, 1460–1494.
  • Biswas, C., Drew, M. G. B., Escudero, D., Frontera, A. & Ghosh, A. (2009). Eur. J. Inorg. Chem. pp. 2238–2246.
  • Blake, A. J., Champness, N. R., Hubberstey, P., Li, W.-S., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev.183, 117–138.
  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Egli, M. & Arkhel, S. (2007). Acc. Chem. Res.40, 197–205. [PubMed]
  • Jeffrey, G. A., Maluszynska, H. & Mitra, J. (1985). Int. J. Biol. Macromol.7, 336–348.
  • Mooibroek, T. J., Teat, S. J., Massera, C., Gamez, P. & Reedijk, J. (2006). Cryst. Growth Des 6, 1569–1574.
  • Nishio, M., Hirota, M. & Umezawa, Y. (1998). The C—H(...)π Interactions (Evidence, Nature and Consequences) New York: Wiley-VCH.
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Rahman, A. N. M. M., Bishop, R., Craig, D. C. & Scudder, M. L. (2003). CrystEngComm, 5, 422–428.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, D., Luo, G.-G., Huang, R.-B., Zhang, N. & Zheng, L.-S. (2009). Acta Cryst. C65, m305–m307. [PubMed]
  • Sun, D., Luo, G.-G., Xu, Q.-J., Zhang, N., Jin, Y.-C., Zhao, H.-X., Lin, L.-R., Huang, R.-B. & Zheng, L.-S. (2009). Inorg. Chem. Commun.12, 782–784.
  • Sun, D., Luo, G.-G., Zhang, N., Chen, J.-H., Huang, R.-B., Lin, L.-R. & Zheng, L.-S. (2009). Polyhedron, 28, 2983–2988.
  • Westrip, S. P. (2010). publCIF In preparation.
  • Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714. [PubMed]
  • You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. C60, m517–m519. [PubMed]
  • You, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m1624–m1626.
  • Zheng, S.-L., Tong, M.-L., Chen, X.-M. & Ng, S. W. (2002). J. Chem. Soc. Dalton Trans pp. 360–364.
  • Zheng, S.-L., Volkov, A. C., Nygren, L. & Coppens, P. (2007). Chem. Eur. J.13, 8583–8590. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography