PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o823.
Published online 2010 March 13. doi:  10.1107/S1600536810008986
PMCID: PMC2983869

4-(Methyl­amino)pyridine

Abstract

The non-H atoms of the title compound, C6H8N2, lie in a common plane (r.m.s. deviation = 0.034 Å). In the crystal, adjacent mol­ecules are linked by inter­molecular N—H(...)N hydrogen bonds into a zigzag chain running along the c axis.

Related literature

For the non-linear optical activity of co-crystals with substituted 4-nitro­phenol, see; Huang et al. (1997 [triangle]). For the crystal structure of 4-amino­pyridine, see: Anderson et al. (2005 [triangle]) and for that of 4-dimethyl­pyridine, see: Ohms & Guth (1984 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o823-scheme1.jpg

Experimental

Crystal data

  • C6H8N2
  • M r = 108.14
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o823-efi1.jpg
  • a = 6.5645 (18) Å
  • b = 7.1230 (19) Å
  • c = 12.489 (4) Å
  • V = 584.0 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 100 K
  • 0.12 × 0.12 × 0.02 mm

Data collection

  • Bruker SMART APEX diffractometer
  • 5127 measured reflections
  • 707 independent reflections
  • 521 reflections with I > 2σ(I)
  • R int = 0.093

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.102
  • S = 0.99
  • 707 reflections
  • 78 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810008986/bt5213sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008986/bt5213Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

I thank the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The amino nitrogen atom in 4-aminopyridine, a drug used for treating multiple sclerosis, is pyramidal; the amino group engages in a N–H···N hydrogen bonding interaction with adjacent pyridyl rings to generate a chain. The amino group uses its other nitrogen atom to form an N–H···πinteraction with other pyridyl rings (Anderson et al., 2005).

In the title monomethyl-substituted analogue (Scheme I, Fig. 1), all non-hydrogen atoms lie in a common plane. However, the amino nitrogen atom is slightly pyramidal, this being displaced out of the trigonal plane by 0.18 (2) Å (Σangles 353 °). On the other hand, the amino nitrogen atom in 4-dimethylaminopyridine has unambiguously planar configuration (Ohms & Guth, 1984). In the present structure, adjacent molecules are linked by an N–H···N hydrogen bond to generate a helical chain motif (Table 1).

The compound belongs to a non-centrosymmetric space group, a feature that may render it useful for second-harmonic generation, particularly as it co-crystal with 2-methoxy-4-nitrophenol shows NLO activity (Huang et al., 1997).

Experimental

4-Methylaminopyridine, as purchased from the Aldrich Chemical Company, is a crystalline material.

Refinement

Due to the absence of anomalous scatterers, 644 Friedel pairs were merged. Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The amino H-atom was located in a difference Fourier map and it was refined with a distance restraint of N–H 0.88±0.01 Å.

Figures

Fig. 1.
Anisotropic displacement ellipsoid plot (Barbour, 2001) of a portion of the hydrogen-bonded chain structure of 4-methylaminopyridine at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C6H8N2F(000) = 232
Mr = 108.14Dx = 1.230 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 379 reflections
a = 6.5645 (18) Åθ = 3.3–21.5°
b = 7.1230 (19) ŵ = 0.08 mm1
c = 12.489 (4) ÅT = 100 K
V = 584.0 (3) Å3Plate, colorless
Z = 40.12 × 0.12 × 0.02 mm

Data collection

Bruker SMART APEX diffractometer521 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.093
graphiteθmax = 27.5°, θmin = 3.3°
ω scansh = −7→8
5127 measured reflectionsk = −9→8
707 independent reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 0.99w = 1/[σ2(Fo2) + (0.0518P)2] where P = (Fo2 + 2Fc2)/3
707 reflections(Δ/σ)max = 0.001
78 parametersΔρmax = 0.18 e Å3
2 restraintsΔρmin = −0.20 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.2579 (4)0.0086 (3)0.49959 (18)0.0219 (6)
H10.177 (4)0.027 (5)0.4440 (19)0.036 (11)*
N2−0.0105 (4)−0.0122 (3)0.8044 (2)0.0232 (6)
C10.1745 (4)−0.0004 (4)0.5993 (2)0.0193 (6)
C2−0.0127 (4)0.0889 (4)0.6198 (2)0.0217 (7)
H2−0.08130.15500.56450.026*
C3−0.0957 (5)0.0794 (4)0.7215 (2)0.0256 (7)
H3−0.22150.14170.73360.031*
C40.1690 (4)−0.0944 (4)0.7840 (2)0.0220 (7)
H40.2337−0.15930.84110.026*
C50.2673 (4)−0.0917 (4)0.6858 (2)0.0207 (7)
H50.3959−0.15110.67730.025*
C60.4412 (4)−0.0966 (5)0.4736 (2)0.0302 (8)
H6A0.5534−0.05460.51950.045*
H6B0.4772−0.07530.39840.045*
H6C0.4168−0.23070.48530.045*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0237 (13)0.0242 (14)0.0178 (12)0.0021 (12)−0.0023 (10)0.0025 (12)
N20.0277 (14)0.0232 (12)0.0189 (11)0.0006 (12)0.0005 (11)−0.0001 (13)
C10.0189 (15)0.0192 (15)0.0198 (14)−0.0048 (13)−0.0055 (12)−0.0010 (12)
C20.0231 (17)0.0218 (16)0.0201 (13)0.0003 (13)−0.0031 (12)0.0033 (13)
C30.0293 (18)0.0210 (16)0.0264 (16)0.0046 (14)0.0013 (14)−0.0005 (14)
C40.0248 (16)0.0223 (16)0.0188 (14)−0.0016 (13)−0.0039 (12)0.0009 (13)
C50.0196 (16)0.0205 (16)0.0219 (14)0.0009 (13)−0.0024 (12)−0.0011 (14)
C60.0242 (16)0.0408 (19)0.0256 (16)0.0051 (14)0.0028 (14)0.0005 (14)

Geometric parameters (Å, °)

N1—C11.362 (4)C2—H20.9500
N1—C61.454 (4)C3—H30.9500
N1—H10.88 (1)C4—C51.386 (4)
N2—C41.340 (4)C4—H40.9500
N2—C31.345 (4)C5—H50.9500
C1—C51.401 (4)C6—H6A0.9800
C1—C21.407 (4)C6—H6B0.9800
C2—C31.384 (4)C6—H6C0.9800
C1—N1—C6120.8 (2)N2—C4—C5124.8 (3)
C1—N1—H1119 (2)N2—C4—H4117.6
C6—N1—H1113 (2)C5—C4—H4117.6
C4—N2—C3115.6 (3)C4—C5—C1119.1 (3)
N1—C1—C5123.5 (3)C4—C5—H5120.4
N1—C1—C2119.8 (3)C1—C5—H5120.4
C5—C1—C2116.7 (3)N1—C6—H6A109.5
C3—C2—C1119.3 (3)N1—C6—H6B109.5
C3—C2—H2120.4H6A—C6—H6B109.5
C1—C2—H2120.4N1—C6—H6C109.5
N2—C3—C2124.5 (3)H6A—C6—H6C109.5
N2—C3—H3117.7H6B—C6—H6C109.5
C2—C3—H3117.7
C6—N1—C1—C57.2 (4)C1—C2—C3—N2−0.6 (5)
C6—N1—C1—C2−174.3 (3)C3—N2—C4—C5−0.5 (5)
N1—C1—C2—C3−179.8 (3)N2—C4—C5—C1−1.2 (5)
C5—C1—C2—C3−1.1 (4)N1—C1—C5—C4−179.4 (3)
C4—N2—C3—C21.5 (5)C2—C1—C5—C42.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.88 (1)2.06 (1)2.930 (3)168 (3)

Symmetry codes: (i) −x, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5213).

References

  • Anderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350–o1353.
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Huang, K.-S., Britton, D. E., Etter, M. C. & Byrn, S. R. (1997). J. Mater. Chem.7, 713–720.
  • Ohms, U. & Guth, H. (1984). Z. Kristallogr.166, 213–219.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography