PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o936–o937.
Published online 2010 March 27. doi:  10.1107/S1600536810009396
PMCID: PMC2983863

2-Amino-5-methyl­pyridinium 4-hydroxy­benzoate

Abstract

In the title salt, C6H9N2 +·C7H5O3 , the carboxyl­ate mean plane of the 4-hydroxy­benzoate anion is twisted by 13.07 (4)° from the attached ring. In the crystal structure, the ions are linked into a two-dimensional network by N—H(...)O, O—H(...)O and C—H(...)O hydrogen bonds. Within this network, the N—H(...)O hydrogen bonds generate R 2 2(8) ring motifs. In addition, π–π inter­actions involving the pyridinium rings, with a centroid–centroid distance of 3.7599 (4) Å, are observed.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997 [triangle]); Katritzky et al. (1996 [triangle]). For related structures, see: Hemamalini & Fun (2010a [triangle],b [triangle],c [triangle]). For 4-hydroxy­benzoic acid, see: Vishweshwar et al. (2003 [triangle]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991 [triangle]); Jeffrey (1997 [triangle]); Scheiner (1997 [triangle]); Aakeröy et al. (2002 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o936-scheme1.jpg

Experimental

Crystal data

  • C6H9N2 +·C7H5O3
  • M r = 246.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o936-efi1.jpg
  • a = 12.9562 (6) Å
  • b = 8.7876 (4) Å
  • c = 11.3276 (5) Å
  • β = 108.397 (1)°
  • V = 1223.78 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 100 K
  • 0.39 × 0.33 × 0.27 mm

Data collection

  • Bruker APEX DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.963, T max = 0.975
  • 20102 measured reflections
  • 5326 independent reflections
  • 4662 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.137
  • S = 1.15
  • 5326 reflections
  • 219 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.60 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810009396/rz2424sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810009396/rz2424Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

In recent years, hydrogen bonds have attracted the interest of chemists and have been widely used to design and synthesize one, two and three-dimensional supramolecular compounds (Aakeröy et al., 2002). Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). 4-Hydroxybenzoic acid is a good hydrogen-bond donor and can form cocrystals with other organic molecules (Vishweshwar et al., 2003). We have recently reported the crystal structures of 2-amino-5-methylpyridinium 3-aminobenzoate (Hemamalini & Fun, 2010a), 2-amino-5-methylpyridinium 4-nitrobenzoate (Hemamalini & Fun, 2010b) and 2-amino-5-methylpyridinium nicotinate (Hemamalini & Fun, 2010c). In continuation of our studies of pyrimidinium derivatives, the crystal structure determination of the title compound has been undertaken.

The asymmetric unit (Fig. 1) contains a 2-amino-5-methylpyridinium cation and a 4-hydroxybenzoate anion. In the 2-amino-5-methylpyridinium cation, a wide angle (122.65 (6)°) is subtended at the protonated N1 atom. The 2-amino-5-methylpyridinium cation is planar, with a maximum deviation of 0.024 (1)Å for atom N1. The bond lengths are normal (Allen et al., 1987). In the 4-hydroxybenzoate anion, the carboxylate group is twisted slightly from the attached ring; the dihedral angle between C7–C12 and O2/O3/C12–C13 planes is 13.07 (4)°.

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group N2 atom are hydrogen-bonded to the carboxylate oxygen atoms (O2 and O3) via a pair of N—H···O hydrogen bonds forming a ring motif R22(8) (Bernstein et al., 1995). The hydroxyl group hydrogen atom is also hydrogen-bonded to the carboxylate oxygen atom through O1—H1O1···O2 hydrogen bonds. The packing is further stabilized by weak C—H···O and π–π interactions involving the pyridinium (centroid Cg1) rings, with Cg1–Cg1 = 3.7599 (4)Å [symmetry codes: 1-x, 1-y, 1-z].

Experimental

A hot methanol solution (20 ml) of 2-amino-5-methylpyridine (54 mg, Aldrich) and 4-hydroxybenzoic acid (69 mg, Merck) were mixed and warmed over a heating magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement

All the H atoms were located in a difference Fourier map and allowed to refine freely [N—H = 0.904 (14) - 0.956 (16)Å, C—H = 0.952 (16) - 1.020 (15)Å and O—H = 0.893 (18)Å].

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) networks. H atoms are not involing the hydrogen bond interactions are omitted for clarity.

Crystal data

C6H9N2+·C7H5O3F(000) = 520
Mr = 246.26Dx = 1.337 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9907 reflections
a = 12.9562 (6) Åθ = 6.5–36.2°
b = 8.7876 (4) ŵ = 0.10 mm1
c = 11.3276 (5) ÅT = 100 K
β = 108.397 (1)°Blcok, colourless
V = 1223.78 (10) Å30.39 × 0.33 × 0.27 mm
Z = 4

Data collection

Bruker APEX DUO CCD area-detector diffractometer5326 independent reflections
Radiation source: fine-focus sealed tube4662 reflections with I > 2σ(I)
graphiteRint = 0.019
[var phi] and ω scansθmax = 35.0°, θmin = 6.2°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −19→20
Tmin = 0.963, Tmax = 0.975k = −14→11
20102 measured reflectionsl = −18→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.15w = 1/[σ2(Fo2) + (0.0859P)2 + 0.1288P] where P = (Fo2 + 2Fc2)/3
5326 reflections(Δ/σ)max = 0.001
219 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = −0.32 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.07705 (4)1.29454 (6)0.44060 (5)0.01923 (12)
O20.23879 (4)0.85691 (6)0.26656 (5)0.01752 (11)
O30.34273 (4)0.90704 (7)0.45979 (5)0.02001 (12)
C70.17088 (6)1.07237 (8)0.50635 (6)0.01751 (13)
C80.08861 (6)1.16244 (9)0.52300 (6)0.01815 (13)
C90.00128 (5)1.20628 (7)0.42014 (6)0.01493 (12)
C10−0.00280 (5)1.15864 (8)0.30079 (6)0.01519 (12)
C110.07897 (5)1.06554 (8)0.28576 (6)0.01482 (12)
C120.16699 (5)1.02150 (7)0.38786 (6)0.01410 (11)
C130.25438 (5)0.92210 (8)0.37051 (6)0.01435 (12)
N10.48836 (5)0.71343 (7)0.42194 (5)0.01544 (11)
N20.39201 (5)0.66496 (8)0.21647 (6)0.01851 (12)
C10.48185 (5)0.64504 (7)0.31296 (6)0.01461 (12)
C20.57195 (6)0.55617 (8)0.30846 (6)0.01732 (13)
C30.65954 (6)0.53911 (8)0.41374 (7)0.01848 (13)
C40.66298 (5)0.60787 (8)0.52806 (6)0.01614 (12)
C50.57535 (5)0.69542 (8)0.52670 (6)0.01641 (12)
C60.75785 (6)0.58625 (10)0.64330 (7)0.02191 (14)
H2A0.5718 (11)0.5103 (16)0.2257 (12)0.027 (3)*
H3A0.7256 (12)0.4762 (18)0.4148 (13)0.034 (3)*
H5A0.5712 (11)0.7533 (16)0.5988 (13)0.027 (3)*
H6A0.7657 (12)0.4804 (19)0.6662 (14)0.039 (4)*
H6B0.8244 (13)0.6124 (18)0.6294 (14)0.038 (4)*
H6C0.7483 (13)0.6507 (19)0.7124 (16)0.040 (4)*
H7A0.2334 (11)1.0425 (17)0.5794 (13)0.029 (3)*
H8A0.0899 (13)1.2010 (18)0.6068 (15)0.038 (4)*
H10A−0.0628 (12)1.1968 (16)0.2289 (14)0.030 (3)*
H11A0.0758 (10)1.0333 (15)0.2012 (11)0.021 (3)*
H101−0.1257 (15)1.3172 (19)0.3673 (16)0.045 (4)*
H1N10.4304 (13)0.7749 (19)0.4310 (14)0.038 (4)*
H1N20.3819 (12)0.6231 (15)0.1407 (13)0.028 (3)*
H2N20.3394 (11)0.7245 (15)0.2326 (12)0.025 (3)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0165 (2)0.0239 (3)0.0175 (2)0.00637 (17)0.00561 (18)0.00151 (18)
O20.0140 (2)0.0240 (2)0.0143 (2)0.00056 (16)0.00405 (16)−0.00257 (17)
O30.0149 (2)0.0292 (3)0.0137 (2)0.00667 (18)0.00134 (16)−0.00034 (18)
C70.0160 (3)0.0233 (3)0.0122 (2)0.0047 (2)0.0029 (2)0.0015 (2)
C80.0176 (3)0.0240 (3)0.0124 (2)0.0053 (2)0.0041 (2)0.0011 (2)
C90.0131 (2)0.0166 (3)0.0150 (2)0.00114 (18)0.00441 (19)0.00139 (19)
C100.0128 (2)0.0175 (3)0.0136 (2)0.00088 (19)0.00182 (19)0.00068 (19)
C110.0137 (2)0.0171 (3)0.0126 (2)0.00074 (19)0.00256 (19)0.00033 (19)
C120.0123 (2)0.0169 (2)0.0127 (2)0.00125 (18)0.00344 (18)0.00125 (19)
C130.0125 (2)0.0180 (3)0.0127 (2)0.00072 (19)0.00415 (19)0.00162 (19)
N10.0147 (2)0.0176 (2)0.0136 (2)0.00132 (17)0.00391 (18)−0.00160 (17)
N20.0164 (2)0.0227 (3)0.0144 (2)0.00148 (19)0.00197 (19)−0.00235 (19)
C10.0152 (2)0.0154 (2)0.0135 (2)−0.00101 (18)0.0050 (2)−0.00051 (19)
C20.0187 (3)0.0187 (3)0.0155 (3)0.0024 (2)0.0067 (2)−0.0014 (2)
C30.0174 (3)0.0202 (3)0.0185 (3)0.0030 (2)0.0066 (2)−0.0001 (2)
C40.0144 (2)0.0177 (3)0.0158 (3)−0.0001 (2)0.0041 (2)0.0008 (2)
C50.0160 (3)0.0193 (3)0.0134 (2)0.0003 (2)0.0039 (2)−0.0015 (2)
C60.0163 (3)0.0271 (3)0.0193 (3)0.0001 (2)0.0013 (2)0.0036 (2)

Geometric parameters (Å, °)

O1—C91.3541 (8)N1—C51.3636 (9)
O1—H1010.893 (18)N1—H1N10.956 (16)
O2—C131.2670 (8)N2—C11.3331 (9)
O3—C131.2728 (8)N2—H1N20.904 (14)
C7—C81.3875 (9)N2—H2N20.922 (14)
C7—C121.4004 (9)C1—C21.4187 (9)
C7—H7A0.993 (14)C2—C31.3705 (10)
C8—C91.3978 (9)C2—H2A1.020 (13)
C8—H8A1.003 (15)C3—C41.4169 (10)
C9—C101.4003 (9)C3—H3A1.016 (15)
C10—C111.3909 (9)C4—C51.3675 (9)
C10—H10A0.990 (15)C4—C61.4962 (10)
C11—C121.3984 (9)C5—H5A0.978 (14)
C11—H11A0.987 (12)C6—H6A0.963 (16)
C12—C131.4912 (9)C6—H6B0.952 (16)
N1—C11.3516 (8)C6—H6C1.006 (17)
C9—O1—H101108.4 (11)C1—N2—H1N2123.5 (9)
C8—C7—C12121.04 (6)C1—N2—H2N2114.9 (8)
C8—C7—H7A119.8 (8)H1N2—N2—H2N2121.6 (12)
C12—C7—H7A119.1 (8)N2—C1—N1118.50 (6)
C7—C8—C9119.89 (6)N2—C1—C2123.94 (6)
C7—C8—H8A122.5 (9)N1—C1—C2117.56 (6)
C9—C8—H8A117.6 (9)C3—C2—C1119.59 (6)
O1—C9—C8117.93 (6)C3—C2—H2A121.2 (8)
O1—C9—C10122.31 (6)C1—C2—H2A119.2 (8)
C8—C9—C10119.76 (6)C2—C3—C4121.81 (6)
C11—C10—C9119.73 (6)C2—C3—H3A122.2 (8)
C11—C10—H10A122.0 (9)C4—C3—H3A116.0 (8)
C9—C10—H10A118.2 (9)C5—C4—C3116.31 (6)
C10—C11—C12121.02 (6)C5—C4—C6122.13 (6)
C10—C11—H11A119.2 (7)C3—C4—C6121.56 (6)
C12—C11—H11A119.7 (7)N1—C5—C4122.03 (6)
C11—C12—C7118.53 (6)N1—C5—H5A114.7 (8)
C11—C12—C13120.53 (6)C4—C5—H5A123.2 (8)
C7—C12—C13120.94 (6)C4—C6—H6A110.2 (9)
O2—C13—O3122.08 (6)C4—C6—H6B111.2 (9)
O2—C13—C12118.84 (6)H6A—C6—H6B104.7 (13)
O3—C13—C12119.08 (6)C4—C6—H6C109.8 (9)
C1—N1—C5122.65 (6)H6A—C6—H6C111.4 (13)
C1—N1—H1N1121.6 (9)H6B—C6—H6C109.5 (13)
C5—N1—H1N1115.7 (9)
C12—C7—C8—C9−1.35 (11)C11—C12—C13—O3166.93 (6)
C7—C8—C9—O1−179.81 (6)C7—C12—C13—O3−13.29 (10)
C7—C8—C9—C100.17 (11)C5—N1—C1—N2177.71 (6)
O1—C9—C10—C11−178.73 (6)C5—N1—C1—C2−2.43 (10)
C8—C9—C10—C111.29 (10)N2—C1—C2—C3−178.20 (7)
C9—C10—C11—C12−1.60 (10)N1—C1—C2—C31.94 (10)
C10—C11—C12—C70.44 (10)C1—C2—C3—C40.08 (11)
C10—C11—C12—C13−179.77 (6)C2—C3—C4—C5−1.66 (11)
C8—C7—C12—C111.05 (11)C2—C3—C4—C6178.74 (7)
C8—C7—C12—C13−178.74 (6)C1—N1—C5—C40.83 (11)
C11—C12—C13—O2−12.12 (10)C3—C4—C5—N11.25 (10)
C7—C12—C13—O2167.67 (6)C6—C4—C5—N1−179.16 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N1···O30.957 (17)1.726 (17)2.6738 (9)170.4 (15)
N2—H1N2···O3i0.905 (14)1.967 (14)2.8443 (9)162.9 (13)
N2—H2N2···O20.922 (14)1.876 (14)2.7962 (9)176.1 (13)
O1—H101···O2ii0.892 (18)1.779 (18)2.6635 (8)170.7 (19)
C3—H3A···O2iii1.016 (16)2.476 (15)3.1887 (9)126.7 (10)

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2424).

References

  • Aakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc.124, 14425–14432. [PubMed]
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o623–o624. [PMC free article] [PubMed]
  • Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o621. [PMC free article] [PubMed]
  • Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o662. [PMC free article] [PubMed]
  • Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.
  • Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.
  • Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.
  • Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.
  • Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Vishweshwar, P., Nangia, A. & Lynch, V. M. (2003). CrystEngComm.5, 164–168.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography