PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o765.
Published online 2010 March 6. doi:  10.1107/S1600536810007919
PMCID: PMC2983857

(2R,3R)-N-(4-Chloro­phen­yl)-2,3-dihydr­oxy-N′-(5-phenyl-1,3,4-thia­diazol-2-yl)succinamide

Abstract

In the structure of the title compound, C18H15ClN4O4S, the dihedral angle between the two benzene rings is 1.4 (3)°. The angle between the phenyl ring and thia­diazole ring is 5.8 (4)°. The conformations of the N—H and C=O bonds are anti with respect to each other. In the crystal structure, mol­ecules are linked by inter­molecular O—H(...)N, N—H(...)O and O—H(...)O hydrogen bonds, forming a three-dimensional network.

Related literature

For the synthesis, see: Marson & Melling (2005 [triangle]); Tu et al. (2008 [triangle]); Shriner & Furrow (1955 [triangle]). For related structures, see: Watadani et al. (2005 [triangle]); Li et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o765-scheme1.jpg

Experimental

Crystal data

  • C18H15ClN4O4S
  • M r = 418.85
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o765-efi1.jpg
  • a = 41.381 (3) Å
  • b = 5.1744 (5) Å
  • c = 8.7442 (9) Å
  • β = 98.315 (1)°
  • V = 1852.6 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.35 mm−1
  • T = 298 K
  • 0.46 × 0.40 × 0.11 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.855, T max = 0.962
  • 4632 measured reflections
  • 2697 independent reflections
  • 2319 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.091
  • S = 1.04
  • 2697 reflections
  • 253 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.15 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 863 Friedel pairs
  • Flack parameter: 0.03 (8)

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810007919/im2182sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007919/im2182Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported by the Science and Technology Research Project of Jiangxi Provincial Educational Department (grant No. GJJ09076), the Natural Science Foundation of Jiangxi Province, China (grant No. 0620074) and the Scientific Research Fund of Nanchang University.

supplementary crystallographic information

Comment

The present tartaric acid derivate is in continuation to our previously reported crystal structure of thiadiazole scaffold compounds (Li et al., 2008). The title compound (Fig. 1) was synthesized according to literature procedures (Marson & Melling 2005; Tu et al., 2008; Shriner & Furrow 1995) and crystallized in the monoclinic crystal system. The dihedral angle between the two benzene rings is 1.4 (3)°; the angle between the benzene ring (C7-C12) and thiadiazole ring is 5.8 (4)°. The conformations of the N—H and C=O bonds are anti with respect to each other. Bond lengths and angles are in normal ranges and comparable to those in related structures (Watadani et al., 2005). In the crystal structure, molecules are linked by intermolecular O—H···N, N—H···O and O—H···O hydrogen bonds forming a three-dimensional network (Table 1, Figure 2).

Experimental

To a solution of 2-amino-5-phenyl-1,3,4-thiadiazole (10 mmol) in THF was added diacetyl-L-tartaric anhydride (12 mmol). After the mixture was stirred at room temperature for 16 h, N,N-dicyclohexylcarbodiimide (9 mmol) and p-chloroaniline (9 mmol) in THF were added to the mixture. The reaction mixture was stirred at room temperature overnight. After insoluble material was filtered off the filtrate was evaporated in vacuo. The residual was hydrolyzed by a solution of K2CO3 in methanol at 65°C for 2 h and recrystallized from THF to afford the target compound. Yield: 3.06 g, 81%, m.p. 221-222°C. Colorless block-shaped single crystals of the title compound suitable for X-ray diffraction analysis precipitated after several days.

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.96 Å, O—H = 0.82–0.85 Å and N—H = 0.86 Å, Uiso(H) = 1.2Ueq(C,N), and 1.5Ueq(O). The absolute configuration is undoubtly as described since enantiomerically pure starting compounds were used and the reaction conditions are not considered to lead to racemisation or inversion.

Figures

Fig. 1.
Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The crystal packing of title compound, viewed along the b axis with hydrogen bonds drawn as dashed lines.

Crystal data

C18H15ClN4O4SF(000) = 864
Mr = 418.85Dx = 1.502 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 2277 reflections
a = 41.381 (3) Åθ = 2.4–27.9°
b = 5.1744 (5) ŵ = 0.35 mm1
c = 8.7442 (9) ÅT = 298 K
β = 98.315 (1)°Block, colourless
V = 1852.6 (3) Å30.46 × 0.40 × 0.11 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2697 independent reflections
Radiation source: fine-focus sealed tube2319 reflections with I > 2σ(I)
graphiteRint = 0.022
phi and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −44→48
Tmin = 0.855, Tmax = 0.962k = −6→4
4632 measured reflectionsl = −10→10

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.091w = 1/[σ2(Fo2) + (0.0471P)2 + 0.5765P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2697 reflectionsΔρmax = 0.19 e Å3
253 parametersΔρmin = −0.15 e Å3
1 restraintAbsolute structure: Flack (1983), 863 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.03 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.51651 (2)0.5674 (3)0.31490 (11)0.0776 (4)
N10.82422 (6)0.6761 (7)0.6878 (3)0.0533 (8)
N20.85606 (6)0.7102 (6)0.7553 (3)0.0510 (8)
N30.77780 (5)0.4311 (5)0.7013 (3)0.0438 (7)
H3B0.76860.51120.62030.053*
N40.64966 (5)0.5279 (6)0.6689 (3)0.0412 (6)
H4A0.65890.67490.69060.049*
O10.76958 (5)0.1304 (5)0.8778 (3)0.0567 (7)
O20.65669 (5)0.0938 (5)0.7001 (3)0.0587 (6)
O30.72236 (4)0.3604 (6)0.5396 (2)0.0508 (6)
H30.70520.32060.48600.076*
O40.70977 (5)0.6252 (4)0.8040 (2)0.0485 (6)
H40.71200.66450.89580.073*
S10.833503 (16)0.34609 (19)0.90607 (8)0.0471 (2)
C10.75941 (7)0.2576 (6)0.7638 (3)0.0394 (8)
C20.72451 (6)0.2352 (7)0.6839 (3)0.0404 (8)
H20.71870.05240.66810.048*
C30.70219 (6)0.3600 (7)0.7875 (3)0.0378 (6)
H3A0.70590.27760.88940.045*
C40.66679 (6)0.3166 (7)0.7157 (3)0.0386 (7)
C50.80992 (7)0.4943 (7)0.7539 (3)0.0412 (8)
C60.86447 (6)0.5530 (7)0.8697 (3)0.0374 (7)
C70.89748 (6)0.5497 (7)0.9587 (3)0.0363 (7)
C80.92006 (7)0.7319 (7)0.9290 (4)0.0510 (9)
H80.91420.85950.85530.061*
C90.95150 (8)0.7257 (8)1.0084 (4)0.0590 (10)
H90.96670.84780.98690.071*
C100.96029 (7)0.5415 (8)1.1180 (4)0.0557 (9)
H100.98140.53911.17160.067*
C110.93800 (7)0.3592 (9)1.1492 (4)0.0558 (9)
H110.94410.23351.22380.067*
C120.90653 (7)0.3624 (8)1.0698 (3)0.0469 (8)
H120.89150.23891.09110.056*
C130.61733 (6)0.5301 (7)0.5857 (3)0.0373 (7)
C140.60929 (7)0.7228 (7)0.4779 (3)0.0464 (8)
H140.62500.84370.46020.056*
C150.57817 (8)0.7379 (7)0.3959 (4)0.0505 (9)
H150.57270.87040.32510.061*
C160.55547 (7)0.5544 (7)0.4205 (3)0.0465 (8)
C170.56310 (6)0.3612 (8)0.5266 (4)0.0505 (8)
H170.54750.23880.54280.061*
C180.59436 (6)0.3490 (8)0.6101 (3)0.0455 (7)
H180.59970.21830.68240.055*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0454 (5)0.1052 (10)0.0745 (6)0.0098 (6)−0.0174 (4)−0.0027 (6)
N10.0330 (13)0.072 (2)0.0507 (15)−0.0065 (14)−0.0070 (11)0.0187 (15)
N20.0342 (13)0.067 (2)0.0487 (15)−0.0096 (14)−0.0045 (11)0.0138 (15)
N30.0319 (12)0.057 (2)0.0389 (13)−0.0026 (12)−0.0077 (10)0.0075 (12)
N40.0353 (12)0.0280 (14)0.0570 (14)−0.0032 (12)−0.0039 (10)−0.0028 (13)
O10.0445 (11)0.0624 (18)0.0572 (13)−0.0051 (12)−0.0125 (10)0.0186 (13)
O20.0386 (11)0.0314 (14)0.1006 (18)−0.0036 (11)−0.0086 (11)0.0009 (13)
O30.0376 (10)0.0773 (17)0.0334 (10)−0.0068 (13)−0.0091 (8)−0.0006 (12)
O40.0474 (12)0.0397 (14)0.0545 (12)−0.0058 (11)−0.0056 (9)−0.0140 (10)
S10.0327 (3)0.0557 (6)0.0486 (4)−0.0064 (4)−0.0085 (3)0.0129 (4)
C10.0365 (15)0.043 (2)0.0369 (15)0.0019 (14)−0.0022 (13)−0.0028 (14)
C20.0332 (15)0.042 (2)0.0422 (16)−0.0023 (14)−0.0063 (12)−0.0065 (15)
C30.0371 (14)0.0351 (17)0.0385 (14)−0.0033 (16)−0.0036 (11)0.0013 (16)
C40.0350 (14)0.0327 (19)0.0469 (15)−0.0010 (15)0.0023 (12)−0.0036 (15)
C50.0333 (14)0.053 (2)0.0356 (14)0.0019 (15)−0.0020 (12)0.0008 (15)
C60.0333 (14)0.043 (2)0.0347 (14)0.0013 (15)0.0020 (11)−0.0008 (15)
C70.0284 (13)0.042 (2)0.0374 (14)−0.0007 (14)0.0016 (11)−0.0050 (15)
C80.0420 (17)0.055 (2)0.0530 (19)−0.0029 (17)−0.0049 (14)0.0103 (17)
C90.0375 (17)0.066 (3)0.071 (2)−0.0122 (17)−0.0017 (16)0.007 (2)
C100.0316 (15)0.062 (3)0.068 (2)0.0018 (18)−0.0092 (14)0.000 (2)
C110.0433 (16)0.061 (2)0.0585 (19)0.007 (2)−0.0093 (14)0.012 (2)
C120.0386 (14)0.048 (2)0.0519 (17)−0.0052 (18)−0.0012 (13)0.0067 (19)
C130.0312 (13)0.0354 (18)0.0439 (15)0.0022 (14)0.0011 (11)−0.0047 (15)
C140.0459 (17)0.040 (2)0.0516 (18)−0.0033 (15)0.0001 (14)0.0037 (16)
C150.0555 (19)0.046 (2)0.0463 (17)0.0077 (17)−0.0040 (15)0.0056 (16)
C160.0377 (15)0.053 (2)0.0461 (16)0.0080 (18)−0.0027 (13)−0.0106 (17)
C170.0324 (14)0.047 (2)0.071 (2)−0.0044 (18)0.0031 (14)−0.001 (2)
C180.0354 (14)0.0396 (19)0.0599 (18)0.0019 (17)0.0014 (13)0.0069 (19)

Geometric parameters (Å, °)

Cl1—C161.739 (3)C6—C71.471 (3)
N1—C51.292 (4)C7—C81.379 (4)
N1—N21.375 (3)C7—C121.385 (5)
N2—C61.297 (4)C8—C91.384 (4)
N3—C11.343 (4)C8—H80.9300
N3—C51.381 (3)C9—C101.363 (5)
N3—H3B0.8600C9—H90.9300
N4—C41.335 (4)C10—C111.374 (5)
N4—C131.427 (3)C10—H100.9300
N4—H4A0.8600C11—C121.384 (4)
O1—C11.218 (3)C11—H110.9300
O2—C41.227 (4)C12—H120.9300
O3—C21.410 (4)C13—C181.373 (4)
O3—H30.8200C13—C141.380 (5)
O4—C31.411 (4)C14—C151.383 (4)
O4—H40.8200C14—H140.9300
S1—C51.713 (3)C15—C161.374 (5)
S1—C61.734 (3)C15—H150.9300
C1—C21.515 (4)C16—C171.369 (5)
C2—C31.528 (4)C17—C181.392 (4)
C2—H20.9800C17—H170.9300
C3—C41.525 (3)C18—H180.9300
C3—H3A0.9800
C5—N1—N2112.0 (2)C8—C7—C6119.7 (3)
C6—N2—N1112.6 (3)C12—C7—C6121.0 (3)
C1—N3—C5126.7 (2)C7—C8—C9120.2 (3)
C1—N3—H3B116.7C7—C8—H8119.9
C5—N3—H3B116.7C9—C8—H8119.9
C4—N4—C13125.5 (3)C10—C9—C8120.3 (3)
C4—N4—H4A117.3C10—C9—H9119.8
C13—N4—H4A117.3C8—C9—H9119.8
C2—O3—H3109.5C9—C10—C11120.1 (3)
C3—O4—H4109.5C9—C10—H10120.0
C5—S1—C686.24 (14)C11—C10—H10120.0
O1—C1—N3123.0 (3)C10—C11—C12120.1 (3)
O1—C1—C2122.0 (3)C10—C11—H11119.9
N3—C1—C2115.0 (2)C12—C11—H11119.9
O3—C2—C1108.1 (2)C11—C12—C7120.0 (3)
O3—C2—C3111.8 (3)C11—C12—H12120.0
C1—C2—C3108.2 (2)C7—C12—H12120.0
O3—C2—H2109.6C18—C13—C14119.7 (3)
C1—C2—H2109.6C18—C13—N4122.3 (3)
C3—C2—H2109.6C14—C13—N4118.0 (3)
O4—C3—C4111.8 (3)C13—C14—C15120.6 (3)
O4—C3—C2109.1 (2)C13—C14—H14119.7
C4—C3—C2108.7 (2)C15—C14—H14119.7
O4—C3—H3A109.0C16—C15—C14119.1 (3)
C4—C3—H3A109.0C16—C15—H15120.4
C2—C3—H3A109.0C14—C15—H15120.4
O2—C4—N4125.3 (3)C17—C16—C15121.0 (3)
O2—C4—C3118.4 (3)C17—C16—Cl1119.6 (3)
N4—C4—C3116.2 (3)C15—C16—Cl1119.5 (3)
N1—C5—N3120.3 (3)C16—C17—C18119.6 (3)
N1—C5—S1115.3 (2)C16—C17—H17120.2
N3—C5—S1124.4 (3)C18—C17—H17120.2
N2—C6—C7122.7 (3)C13—C18—C17120.0 (3)
N2—C6—S1113.92 (19)C13—C18—H18120.0
C7—C6—S1123.4 (2)C17—C18—H18120.0
C8—C7—C12119.3 (2)
C5—N1—N2—C6−0.1 (4)C5—S1—C6—C7−179.0 (3)
C5—N3—C1—O1−0.5 (5)N2—C6—C7—C85.0 (5)
C5—N3—C1—C2178.1 (3)S1—C6—C7—C8−175.8 (2)
O1—C1—C2—O3−167.3 (3)N2—C6—C7—C12−173.5 (3)
N3—C1—C2—O314.1 (4)S1—C6—C7—C125.8 (4)
O1—C1—C2—C371.5 (4)C12—C7—C8—C90.6 (5)
N3—C1—C2—C3−107.1 (3)C6—C7—C8—C9−177.9 (3)
O3—C2—C3—O4−55.8 (3)C7—C8—C9—C10−0.8 (6)
C1—C2—C3—O463.0 (3)C8—C9—C10—C110.6 (6)
O3—C2—C3—C466.4 (3)C9—C10—C11—C12−0.2 (6)
C1—C2—C3—C4−174.8 (3)C10—C11—C12—C70.0 (6)
C13—N4—C4—O2−3.5 (5)C8—C7—C12—C11−0.2 (5)
C13—N4—C4—C3173.6 (2)C6—C7—C12—C11178.3 (3)
O4—C3—C4—O2−177.4 (3)C4—N4—C13—C1834.5 (4)
C2—C3—C4—O262.1 (4)C4—N4—C13—C14−145.7 (3)
O4—C3—C4—N45.3 (3)C18—C13—C14—C151.1 (5)
C2—C3—C4—N4−115.3 (3)N4—C13—C14—C15−178.7 (3)
N2—N1—C5—N3−179.7 (3)C13—C14—C15—C16−1.5 (5)
N2—N1—C5—S10.4 (4)C14—C15—C16—C171.2 (5)
C1—N3—C5—N1−176.0 (3)C14—C15—C16—Cl1−178.6 (2)
C1—N3—C5—S13.9 (5)C15—C16—C17—C18−0.5 (5)
C6—S1—C5—N1−0.4 (3)Cl1—C16—C17—C18179.4 (3)
C6—S1—C5—N3179.6 (3)C14—C13—C18—C17−0.2 (5)
N1—N2—C6—C7179.1 (3)N4—C13—C18—C17179.5 (3)
N1—N2—C6—S1−0.2 (4)C16—C17—C18—C13−0.1 (5)
C5—S1—C6—N20.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···N1i0.821.952.733 (3)159
N3—H3B···O3ii0.862.353.061 (4)140
O4—H4···O1iii0.822.022.790 (3)155
N4—H4A···O2iv0.862.172.951 (4)151

Symmetry codes: (i) −x+3/2, y−1/2, −z+1; (ii) −x+3/2, y+1/2, −z+1; (iii) −x+3/2, y+1/2, −z+2; (iv) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2182).

References

  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Li, S.-H., Huang, H.-M., Kuang, B.-H., Tu, G.-G. & Liu, C.-M. (2008). Acta Cryst. E64, o2006. [PMC free article] [PubMed]
  • Marson, C. M. & Melling, R. C. (2005). J. Org. Chem 70, 9771–9779. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shriner, R. L. & Furrow, C. L. (1955). Org. Synth.35, 49–50.
  • Tu, G. G., Li, S. H., Huang, H. M., Li, G., Xiong, F., Mai, X., Zhu, H. W., Kuang, B. H. & Xu, W. F. (2008). Bioorg. Med. Chem 16, 6663–6668. [PubMed]
  • Watadani, T., Nunomura, S., Takahashi, Y. & Fujii, I. (2005). Anal. Sci. X 21, x131–x132.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography