PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o846–o847.
Published online 2010 March 17. doi:  10.1107/S1600536810008147
PMCID: PMC2983846

Ethyl 4-(2-hydroxy­ethyl­amino)-3-nitro­benzoate

Abstract

In the title compound, C11H14N2O5, the mol­ecular structure is stabilized by an intra­molecular N—H(...)O hydrogen bond, which generates an S(6) ring motif. The nitro group is twisted slightly from the attached benzene ring, forming a dihedral angle of 5.2 (2)°. In the crystal packing, inter­molecular O—H(...)O and C—H(...)O hydrogen bonds link the mol­ecules into a three-dimensional network. The crystal studied was a non-merohedral twin, the refined ratio of the twin components being 0.264 (2):0.736 (2).

Related literature

For background to benzimidazoles, see: Mayer et al. (1998 [triangle]); Brouillette et al. (1999 [triangle]); Williams et al. (1995 [triangle]); Wright (1951 [triangle]). For reference bond-length data, see: Allen et al. (1987 [triangle]). For related structures, see: Narendra Babu, Abdul Rahim, Abd Hamid et al. (2009 [triangle]); Narendra Babu, Abdul Rahim, Osman et al. (2009 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o846-scheme1.jpg

Experimental

Crystal data

  • C11H14N2O5
  • M r = 254.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o846-efi1.jpg
  • a = 10.6422 (6) Å
  • b = 14.9954 (9) Å
  • c = 7.1975 (4) Å
  • β = 99.607 (2)°
  • V = 1132.50 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 100 K
  • 0.43 × 0.13 × 0.03 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 209 [triangle]0) T min = 0.951, T max = 0.997
  • 8457 measured reflections
  • 2587 independent reflections
  • 2026 reflections with I > 2σ(I)
  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.129
  • S = 1.04
  • 2587 reflections
  • 173 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810008147/wn2377sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008147/wn2377Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks the Malaysian Government and USM for the award of a Research Fellowship. ASAR, SAH and SNNB thank USM for funding the synthetic chemistry work under the University Research Grant (1001/PFARMASI/815026). SNNB acknowledges USM for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Benzimidazoles serve as a common scaffold used worldwide for various successful drugs (Mayer et al., 1998). Construction of pharmacologically important benzimidazoles could be accessed via nitrobenzoic acid precursors (Brouillette et al., 1999; Williams et al., 1995; Wright, 1951). The title compound was obtained as an intermediate in the synthesis of benzimidazole derivatives; we present here its crystal structure.

In the title compound (Fig. 1), the molecular structure is stabilized by an intramolecular N2—H2A···O2 hydrogen bond which generates an S(6) ring motif (Bernstein et al., 1995). The nitro group is slightly twisted away from the benzene ring, the dihedral angle between N1/O1/O2/C2 and C1–C6 being 5.2 (2)°. The bond lengths (Allen et al., 1987) and angles in the molecule are within normal ranges and are similiar to those in other related structures (Narendra Babu, Abdul Rahim, Abd Hamid et al., 2009; Narendra Babu, Abdul Rahim, Osman et al., 2009).

In the crystal packing (Fig. 2), intermolecular O5—H5B···O3, C8—H8A···O5, C10—H10A···O5, C10—H10B···O1 and C11—H11A···O2 hydrogen bonds (Table 1) link the molecules into a three-dimensional network.

Experimental

The synthesis of the title compound was performed by the dropwise addition of N,N-diisopropyl ethylamine (1.1 mmol) to a stirred solution of ethyl 4-fluoro-3-nitrobenzoate (1.0 mmol) in dry dichloromethane (10.0 ml), followed by ethanolamine (1.1 mmol). The reaction mixture was left stirring overnight at room temperature under an inert atmosphere. Upon completion, the reaction mixture was washed with 10% Na2CO3 (3 x 10.0 ml). The combined organic fractions were dried over MgSO4 and evaporated in vacuo. Recrystallisation with hot hexane gave the title compound as bright yellow crystals, which were found to be suitable for characterisation by X-ray crystallography.

Refinement

H2A and H5B were located in a difference Fourier map and were refined freely [N—H = 0.84 (3) Å; O—H = 0.83 (3) Å]. The remaining H atoms were positioned geometrically [C—H = 0.93 to 0.97 Å] and were refined using a riding model, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and 1.2 for all other H atoms. A rotating group model was applied to the methyl group. The crystal studied was a non-merohedral twin, the refined ratio of the twin components being 0.264 (2):0.736 (2).

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius. The dashed line indicates an intramolecular hydrogen bond.
Fig. 2.
The crystal packing of the title compound, viewed along the c axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C11H14N2O5F(000) = 536
Mr = 254.24Dx = 1.491 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1880 reflections
a = 10.6422 (6) Åθ = 2.4–28.1°
b = 14.9954 (9) ŵ = 0.12 mm1
c = 7.1975 (4) ÅT = 100 K
β = 99.607 (2)°Needle, yellow
V = 1132.50 (11) Å30.43 × 0.13 × 0.03 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer2587 independent reflections
Radiation source: fine-focus sealed tube2026 reflections with I > 2σ(I)
graphiteRint = 0.050
[var phi] and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2090)h = −13→13
Tmin = 0.951, Tmax = 0.997k = −19→19
8457 measured reflectionsl = −8→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0602P)2 + 0.3204P] where P = (Fo2 + 2Fc2)/3
2587 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = −0.31 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.38669 (15)0.04338 (11)1.1300 (3)0.0285 (4)
O20.57298 (13)0.09227 (10)1.2508 (2)0.0193 (4)
O30.04479 (14)0.22764 (10)0.8325 (2)0.0194 (4)
O40.07343 (13)0.37665 (10)0.8413 (2)0.0170 (4)
O50.82105 (15)0.33071 (11)1.0883 (2)0.0192 (4)
N10.46108 (17)0.10564 (12)1.1729 (3)0.0157 (4)
N20.61527 (17)0.26565 (12)1.2825 (3)0.0147 (4)
C10.29266 (19)0.20462 (14)1.0362 (3)0.0141 (5)
H1A0.24450.15390.99980.017*
C20.4166 (2)0.19539 (14)1.1327 (3)0.0135 (4)
C30.49466 (19)0.27115 (14)1.1919 (3)0.0135 (4)
C40.43542 (19)0.35571 (14)1.1508 (3)0.0148 (5)
H4A0.48110.40711.19010.018*
C50.3135 (2)0.36374 (14)1.0555 (3)0.0148 (5)
H5A0.27840.42021.03080.018*
C60.2402 (2)0.28743 (14)0.9938 (3)0.0150 (5)
C70.11002 (19)0.29283 (14)0.8828 (3)0.0148 (5)
C8−0.05110 (19)0.38757 (14)0.7226 (3)0.0168 (5)
H8A−0.11430.35170.77090.020*
H8B−0.04730.36850.59490.020*
C9−0.0866 (2)0.48440 (16)0.7242 (4)0.0254 (6)
H9A−0.16950.49290.65010.038*
H9B−0.02510.51920.67220.038*
H9C−0.08790.50310.85150.038*
C100.69687 (19)0.34151 (14)1.3465 (3)0.0142 (4)
H10A0.76730.32101.44000.017*
H10B0.64840.38411.40730.017*
C110.75012 (19)0.38863 (14)1.1886 (3)0.0157 (5)
H11A0.68010.41411.10110.019*
H11B0.80470.43721.24190.019*
H2A0.642 (2)0.2141 (18)1.310 (4)0.021 (7)*
H5B0.888 (3)0.3148 (18)1.156 (4)0.028 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0224 (8)0.0119 (8)0.0480 (12)−0.0046 (7)−0.0035 (8)0.0003 (8)
O20.0169 (8)0.0143 (8)0.0252 (9)0.0027 (6)−0.0004 (7)0.0010 (7)
O30.0145 (7)0.0177 (8)0.0243 (9)−0.0040 (6)−0.0011 (7)0.0005 (7)
O40.0118 (7)0.0168 (8)0.0207 (9)0.0003 (6)−0.0024 (6)0.0005 (7)
O50.0149 (8)0.0216 (9)0.0204 (9)0.0025 (6)0.0012 (7)−0.0020 (7)
N10.0146 (9)0.0129 (9)0.0192 (10)−0.0015 (7)0.0018 (7)−0.0009 (8)
N20.0116 (8)0.0115 (9)0.0201 (10)0.0007 (7)0.0002 (8)0.0017 (8)
C10.0153 (11)0.0145 (10)0.0130 (11)−0.0038 (8)0.0036 (8)−0.0026 (9)
C20.0151 (10)0.0119 (10)0.0144 (11)−0.0002 (8)0.0051 (8)0.0017 (8)
C30.0145 (10)0.0142 (11)0.0118 (11)−0.0018 (8)0.0029 (8)−0.0001 (8)
C40.0135 (10)0.0123 (10)0.0188 (12)−0.0012 (8)0.0030 (8)−0.0016 (9)
C50.0169 (10)0.0128 (10)0.0147 (11)0.0014 (8)0.0027 (8)0.0010 (9)
C60.0132 (10)0.0165 (11)0.0156 (11)0.0003 (8)0.0030 (9)0.0013 (9)
C70.0148 (10)0.0159 (11)0.0144 (11)−0.0004 (8)0.0045 (9)0.0007 (9)
C80.0116 (10)0.0203 (11)0.0161 (11)0.0004 (8)−0.0045 (9)0.0015 (9)
C90.0198 (11)0.0226 (13)0.0301 (14)0.0053 (9)−0.0069 (10)−0.0019 (11)
C100.0116 (9)0.0147 (10)0.0148 (11)−0.0009 (8)−0.0017 (8)−0.0004 (9)
C110.0127 (10)0.0128 (10)0.0208 (11)−0.0013 (8)0.0005 (9)−0.0004 (9)

Geometric parameters (Å, °)

O1—N11.230 (2)C4—C51.368 (3)
O2—N11.245 (2)C4—H4A0.9300
O3—C71.218 (3)C5—C61.414 (3)
O4—C71.335 (3)C5—H5A0.9300
O4—C81.461 (2)C6—C71.482 (3)
O5—C111.424 (3)C8—C91.501 (3)
O5—H5B0.83 (3)C8—H8A0.9700
N1—C21.440 (3)C8—H8B0.9700
N2—C31.342 (3)C9—H9A0.9600
N2—C101.459 (3)C9—H9B0.9600
N2—H2A0.84 (3)C9—H9C0.9600
C1—C61.375 (3)C10—C111.526 (3)
C1—C21.391 (3)C10—H10A0.9700
C1—H1A0.9300C10—H10B0.9700
C2—C31.430 (3)C11—H11A0.9700
C3—C41.425 (3)C11—H11B0.9700
C7—O4—C8116.01 (16)O3—C7—C6123.46 (19)
C11—O5—H5B110 (2)O4—C7—C6112.56 (18)
O1—N1—O2121.21 (17)O4—C8—C9107.99 (17)
O1—N1—C2118.86 (17)O4—C8—H8A110.1
O2—N1—C2119.92 (17)C9—C8—H8A110.1
C3—N2—C10125.21 (19)O4—C8—H8B110.1
C3—N2—H2A115.5 (18)C9—C8—H8B110.1
C10—N2—H2A119.1 (18)H8A—C8—H8B108.4
C6—C1—C2121.12 (19)C8—C9—H9A109.5
C6—C1—H1A119.4C8—C9—H9B109.5
C2—C1—H1A119.4H9A—C9—H9B109.5
C1—C2—C3121.68 (19)C8—C9—H9C109.5
C1—C2—N1116.49 (18)H9A—C9—H9C109.5
C3—C2—N1121.82 (19)H9B—C9—H9C109.5
N2—C3—C4120.65 (19)N2—C10—C11113.65 (18)
N2—C3—C2123.9 (2)N2—C10—H10A108.8
C4—C3—C2115.47 (18)C11—C10—H10A108.8
C5—C4—C3122.1 (2)N2—C10—H10B108.8
C5—C4—H4A118.9C11—C10—H10B108.8
C3—C4—H4A118.9H10A—C10—H10B107.7
C4—C5—C6120.9 (2)O5—C11—C10112.94 (18)
C4—C5—H5A119.5O5—C11—H11A109.0
C6—C5—H5A119.5C10—C11—H11A109.0
C1—C6—C5118.61 (19)O5—C11—H11B109.0
C1—C6—C7118.53 (19)C10—C11—H11B109.0
C5—C6—C7122.85 (19)H11A—C11—H11B107.8
O3—C7—O4123.96 (19)
C6—C1—C2—C30.0 (3)C3—C4—C5—C60.3 (3)
C6—C1—C2—N1178.9 (2)C2—C1—C6—C5−1.9 (3)
O1—N1—C2—C1−3.9 (3)C2—C1—C6—C7177.1 (2)
O2—N1—C2—C1176.5 (2)C4—C5—C6—C11.8 (3)
O1—N1—C2—C3175.0 (2)C4—C5—C6—C7−177.2 (2)
O2—N1—C2—C3−4.6 (3)C8—O4—C7—O3−2.2 (3)
C10—N2—C3—C4−0.1 (3)C8—O4—C7—C6176.60 (18)
C10—N2—C3—C2−179.3 (2)C1—C6—C7—O32.8 (3)
C1—C2—C3—N2−178.8 (2)C5—C6—C7—O3−178.3 (2)
N1—C2—C3—N22.4 (3)C1—C6—C7—O4−176.1 (2)
C1—C2—C3—C42.0 (3)C5—C6—C7—O42.9 (3)
N1—C2—C3—C4−176.81 (19)C7—O4—C8—C9168.7 (2)
N2—C3—C4—C5178.7 (2)C3—N2—C10—C11−76.3 (3)
C2—C3—C4—C5−2.1 (3)N2—C10—C11—O5−57.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.84 (3)1.99 (3)2.642 (2)134 (2)
O5—H5B···O3i0.83 (3)2.02 (3)2.851 (2)177 (3)
C8—H8A···O5ii0.972.513.271 (3)135
C10—H10A···O5iii0.972.543.267 (3)132
C10—H10B···O1iv0.972.433.168 (3)133
C11—H11A···O2v0.972.593.403 (3)142

Symmetry codes: (i) x+1, −y+1/2, z+1/2; (ii) x−1, y, z; (iii) x, −y+1/2, z+1/2; (iv) −x+1, y+1/2, −z+5/2; (v) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2377).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Brouillette, J. W., Atigadda, V. R., Luo, M., Air, G. M., Babu, Y. S. & Bantia, S. (1999). Bioorg. Med. Chem. Lett.9, 1901–1906. [PubMed]
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Mayer, J. P., Lewis, G. S., McGee, C. & Bankaitis-Davis, D. (1998). Tetrahedron Lett.39, 6655–6658.
  • Narendra Babu, S. N., Abdul Rahim, A. S., Abd Hamid, S., Quah, C. K. & Fun, H.-K. (2009). Acta Cryst. E65, o1079. [PMC free article] [PubMed]
  • Narendra Babu, S. N., Abdul Rahim, A. S., Osman, H., Quah, C. K. & Fun, H.-K. (2009). Acta Cryst. E65, o1566–o1567. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Williams, M., Bischofberger, N., Swaminathan, S. & Kim, C. U. (1995). Bioorg. Med. Chem. Lett.5, 2251–2254.
  • Wright, J. B. (1951). Chem. Rev.48, 397–541. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography