PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m458.
Published online 2010 March 27. doi:  10.1107/S1600536810010949
PMCID: PMC2983845

{6,6′-Dibromo-4,4′-dichloro-2,2′-[o-phenyl­enebis(nitrilo­methyl­idyne)]diphenolato}nickel(II)

Abstract

In the title complex, [Ni(C20H10Br2Cl2N2O2)], the NiII ion is coordinated by two phen­oxy O atoms and two imino N atoms of the tetradentate ligand, forming a slightly distorted square-planar environment. The mol­ecule is essentially planar, with an r.m.s. deviation of 0.088 Å for the mean plane defined by all non-H atoms in the mol­ecule.

Related literature

For applications of nickel(II) complexes containing nitro­gen and oxygen donor ligands, see: Chang et al. (2008 [triangle]). For related structures, see: Wang et al. (2003 [triangle]); Niu et al. (2009 [triangle]); Azevedo et al. (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m458-scheme1.jpg

Experimental

Crystal data

  • [Ni(C20H10Br2Cl2N2O2)]
  • M r = 599.73
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m458-efi1.jpg
  • a = 10.4289 (2) Å
  • b = 9.2712 (2) Å
  • c = 20.6731 (4) Å
  • β = 102.101 (1)°
  • V = 1954.43 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 5.38 mm−1
  • T = 296 K
  • 0.40 × 0.10 × 0.10 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.222, T max = 0.616
  • 18381 measured reflections
  • 4487 independent reflections
  • 2921 reflections with I > 2σ(I)
  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.085
  • S = 0.99
  • 4487 reflections
  • 302 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.62 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810010949/lh5011sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010949/lh5011Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Malaya (grant Nos. PS320/2008 C and RG020/09AFR) for supporting this study.

supplementary crystallographic information

Comment

Many low-spin square-planar nickel(II) complexes and high-spin octahedral nickel(II) complexes containing nitrogen and oxygen donor ligands have been reported due to their potential industrial applications (e.g. Chang et al., 2008). In continuation of our study on the optical properties of nickel(II) Schiff base complexes, we report here the molecular structure of the title nickel(II) complex.

The molecular structure of the title complex is shown in Fig .1. The the NiII ion is coordinated by two phenoxy oxygen atoms and two imino nitrogen atoms in a slightly distorted square-planar geometry. The molecule is essentially planar with an rms deviation of 0.088Å for the mean plane defined by all non-hydrogen atoms in the molecule. The Ni—O bond distances [1.836 (2), 1.838 (2) Å] and Ni—N bond distances [1.853 (3), 1.858 (3) Å] are similar to those reported for related structures [1.841 (5), 1.847 (5) Å and 1.859 (6), 1.856 (6) Å, respectively, Azevedo et al., 1994; Ni-O 1.840 (5) and Ni-N 1.863 (5), 1.858 (5)Å, Wang et al., 2003; Ni-O 1.839 (2) A and Ni-N 1.825 (2) Å, Niu et al., 2009].

Experimental

The Schiff base, o-phenylenebis(3-bromo-5-chlorosalicylidenaminate was prepared by the condensation reaction between o-phenylenediamine and 3-bromo-5-chlorosalicylaldehyde in ethanol. 0.1 g (0.183 mmol) of the Schiff base ligand and 0.04 g (0.183 mmol) of nickel(II) acetate tetrahydrate were dissolved in 100 ml of absolute ethanol. A few drops of triethylamine were added and the mixture was refluxed for 3 hours. After filtering, a red colored solid was obtained upon slow evaporation of the filtrate. It was recrystalised from DMF to obtain the red crystals suitable for X-ray analysis.

Refinement

Hydrogen atoms were located in a difference Fourier map, and were allowed to refine isotropically.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

[Ni(C20H10Br2Cl2N2O2)]F(000) = 1168
Mr = 599.73Dx = 2.038 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2542 reflections
a = 10.4289 (2) Åθ = 2.5–22.8°
b = 9.2712 (2) ŵ = 5.38 mm1
c = 20.6731 (4) ÅT = 296 K
β = 102.101 (1)°Tube, red
V = 1954.43 (7) Å30.40 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer4487 independent reflections
Radiation source: fine-focus sealed tube2921 reflections with I > 2σ(I)
graphiteRint = 0.060
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −13→13
Tmin = 0.222, Tmax = 0.616k = −12→12
18381 measured reflectionsl = −26→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 0.99w = 1/[σ2(Fo2) + (0.0337P)2] where P = (Fo2 + 2Fc2)/3
4487 reflections(Δ/σ)max < 0.001
302 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = −0.46 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.42858 (4)0.82303 (5)0.00079 (2)0.03697 (13)
Br20.81519 (4)0.64578 (5)0.13971 (2)0.05814 (14)
Br10.53750 (4)0.96193 (5)0.22642 (2)0.06178 (15)
Cl20.88192 (10)0.28706 (11)−0.06471 (6)0.0600 (3)
Cl10.13100 (12)1.35240 (12)0.17562 (7)0.0714 (3)
C150.6015 (3)0.5754 (4)−0.05020 (18)0.0378 (8)
O20.4438 (2)0.9051 (3)0.08286 (12)0.0459 (6)
C160.6762 (4)0.4667 (4)−0.0737 (2)0.0447 (9)
N10.2791 (3)0.9255 (3)−0.03805 (15)0.0394 (7)
C140.4875 (4)0.6290 (4)−0.0939 (2)0.0429 (9)
C200.6425 (3)0.6305 (4)0.01441 (18)0.0382 (8)
C170.7884 (4)0.4177 (4)−0.0343 (2)0.0442 (9)
C10.3679 (4)1.0010 (4)0.10100 (19)0.0418 (9)
O10.5802 (2)0.7289 (3)0.03987 (12)0.0418 (6)
N20.4122 (3)0.7309 (3)−0.08005 (14)0.0372 (7)
C50.1859 (4)1.1734 (4)0.0825 (2)0.0493 (10)
C190.7597 (3)0.5726 (4)0.05273 (18)0.0409 (9)
C20.3932 (4)1.0453 (4)0.16778 (19)0.0434 (9)
C130.3023 (4)0.7792 (4)−0.12826 (18)0.0424 (9)
C110.1575 (5)0.7925 (5)−0.2344 (2)0.0615 (13)
C90.1218 (4)0.9484 (5)−0.1469 (2)0.0548 (11)
C100.0866 (5)0.9001 (5)−0.2110 (2)0.0617 (12)
C80.2305 (4)0.8878 (4)−0.10542 (18)0.0435 (9)
C180.8314 (4)0.4705 (4)0.0289 (2)0.0451 (10)
C70.2236 (4)1.0247 (4)−0.0091 (2)0.0446 (10)
C30.3200 (4)1.1484 (4)0.1905 (2)0.0479 (10)
C40.2165 (4)1.2134 (4)0.1466 (2)0.0511 (10)
C60.2602 (3)1.0669 (4)0.05861 (19)0.0418 (9)
C120.2644 (4)0.7316 (5)−0.1927 (2)0.0559 (11)
H140.471 (3)0.581 (3)−0.1363 (16)0.028 (8)*
H30.341 (3)1.177 (4)0.2365 (19)0.052 (11)*
H160.643 (3)0.431 (4)−0.1153 (19)0.045 (11)*
H180.901 (4)0.432 (4)0.0531 (19)0.049 (12)*
H70.155 (3)1.070 (4)−0.0322 (17)0.039 (10)*
H110.125 (5)0.765 (5)−0.279 (3)0.097 (17)*
H100.023 (4)0.947 (4)−0.239 (2)0.057 (12)*
H50.120 (3)1.212 (4)0.0547 (19)0.044 (11)*
H90.066 (4)1.023 (4)−0.132 (2)0.069 (13)*
H120.310 (4)0.651 (5)−0.210 (2)0.085 (16)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0367 (3)0.0410 (3)0.0324 (3)−0.0011 (2)0.0056 (2)0.0021 (2)
Br20.0541 (3)0.0737 (3)0.0418 (3)0.0081 (2)−0.00089 (19)−0.0011 (2)
Br10.0653 (3)0.0779 (3)0.0398 (3)0.0091 (2)0.0058 (2)0.0018 (2)
Cl20.0570 (7)0.0536 (6)0.0746 (8)0.0071 (5)0.0256 (6)−0.0057 (5)
Cl10.0824 (8)0.0545 (7)0.0866 (9)0.0122 (6)0.0392 (7)−0.0079 (6)
C150.039 (2)0.040 (2)0.035 (2)−0.0059 (16)0.0088 (17)0.0009 (16)
O20.0452 (15)0.0519 (16)0.0387 (15)0.0094 (12)0.0044 (12)−0.0038 (12)
C160.043 (2)0.048 (2)0.044 (3)−0.0076 (18)0.010 (2)−0.0020 (19)
N10.0404 (17)0.0384 (17)0.0381 (18)−0.0021 (14)0.0051 (14)0.0054 (14)
C140.048 (2)0.050 (2)0.032 (2)−0.0087 (19)0.0099 (18)−0.0027 (18)
C200.035 (2)0.042 (2)0.039 (2)−0.0052 (16)0.0125 (17)0.0050 (17)
C170.047 (2)0.040 (2)0.051 (3)−0.0036 (17)0.023 (2)0.0005 (18)
C10.046 (2)0.036 (2)0.046 (2)−0.0070 (17)0.0151 (19)0.0036 (17)
O10.0373 (14)0.0513 (15)0.0356 (15)0.0052 (11)0.0048 (11)−0.0009 (12)
N20.0344 (17)0.0429 (17)0.0332 (17)−0.0024 (13)0.0049 (13)0.0026 (13)
C50.046 (3)0.043 (2)0.058 (3)0.0019 (19)0.010 (2)0.006 (2)
C190.038 (2)0.044 (2)0.042 (2)−0.0051 (17)0.0102 (17)0.0042 (17)
C20.048 (2)0.046 (2)0.039 (2)−0.0016 (17)0.0152 (18)0.0053 (18)
C130.044 (2)0.049 (2)0.033 (2)−0.0080 (17)0.0054 (17)0.0059 (17)
C110.067 (3)0.076 (3)0.034 (3)−0.010 (2)−0.007 (2)0.003 (2)
C90.055 (3)0.055 (3)0.047 (3)0.000 (2)−0.005 (2)0.007 (2)
C100.060 (3)0.064 (3)0.051 (3)−0.006 (2)−0.010 (2)0.011 (2)
C80.045 (2)0.047 (2)0.037 (2)−0.0087 (17)0.0019 (18)0.0066 (17)
C180.036 (2)0.047 (2)0.053 (3)0.0006 (18)0.009 (2)0.007 (2)
C70.040 (2)0.041 (2)0.050 (3)0.0021 (18)0.002 (2)0.0094 (19)
C30.055 (3)0.049 (2)0.043 (3)−0.009 (2)0.019 (2)−0.004 (2)
C40.056 (3)0.042 (2)0.062 (3)−0.0010 (18)0.028 (2)−0.003 (2)
C60.039 (2)0.039 (2)0.047 (2)−0.0020 (16)0.0074 (18)0.0003 (17)
C120.059 (3)0.065 (3)0.041 (3)−0.003 (2)0.004 (2)−0.003 (2)

Geometric parameters (Å, °)

Ni1—O21.836 (2)C1—C21.411 (5)
Ni1—O11.838 (2)N2—C131.424 (4)
Ni1—N21.853 (3)C5—C41.349 (6)
Ni1—N11.858 (3)C5—C61.407 (5)
Br2—C191.895 (4)C5—H50.87 (3)
Br1—C21.888 (4)C19—C181.362 (5)
Cl2—C171.752 (4)C2—C31.367 (5)
Cl1—C41.744 (4)C13—C121.381 (5)
C15—C201.410 (5)C13—C81.394 (5)
C15—C161.420 (5)C11—C121.379 (6)
C15—C141.424 (5)C11—C101.388 (7)
O2—C11.297 (4)C11—H110.95 (5)
C16—C171.356 (5)C9—C101.372 (6)
C16—H160.92 (4)C9—C81.389 (5)
N1—C71.297 (5)C9—H90.99 (4)
N1—C81.422 (5)C10—H100.89 (4)
C14—N21.298 (5)C18—H180.87 (4)
C14—H140.97 (3)C7—C61.426 (5)
C20—O11.294 (4)C7—H70.87 (3)
C20—C191.416 (5)C3—C41.393 (6)
C17—C181.379 (5)C3—H30.97 (4)
C1—C61.411 (5)C12—H120.99 (4)
O2—Ni1—O183.74 (11)C20—C19—Br2116.8 (3)
O2—Ni1—N2176.99 (12)C3—C2—C1122.4 (4)
O1—Ni1—N294.91 (12)C3—C2—Br1119.5 (3)
O2—Ni1—N195.14 (12)C1—C2—Br1118.0 (3)
O1—Ni1—N1177.58 (12)C12—C13—C8119.5 (4)
N2—Ni1—N186.31 (13)C12—C13—N2126.9 (4)
C20—C15—C16120.1 (3)C8—C13—N2113.6 (3)
C20—C15—C14121.4 (3)C12—C11—C10119.7 (4)
C16—C15—C14118.4 (3)C12—C11—H11125 (3)
C1—O2—Ni1127.7 (2)C10—C11—H11115 (3)
C17—C16—C15119.9 (4)C10—C9—C8118.8 (4)
C17—C16—H16123 (2)C10—C9—H9118 (3)
C15—C16—H16117 (2)C8—C9—H9123 (3)
C7—N1—C8121.6 (3)C9—C10—C11121.1 (5)
C7—N1—Ni1125.3 (3)C9—C10—H10118 (3)
C8—N1—Ni1113.1 (2)C11—C10—H10120 (3)
N2—C14—C15125.2 (4)C9—C8—C13120.6 (4)
N2—C14—H14122.3 (18)C9—C8—N1125.6 (4)
C15—C14—H14112.5 (18)C13—C8—N1113.7 (3)
O1—C20—C15124.2 (3)C19—C18—C17119.7 (4)
O1—C20—C19119.2 (3)C19—C18—H18122 (3)
C15—C20—C19116.6 (3)C17—C18—H18118 (3)
C16—C17—C18121.2 (4)N1—C7—C6126.4 (4)
C16—C17—Cl2119.4 (3)N1—C7—H7118 (2)
C18—C17—Cl2119.4 (3)C6—C7—H7115 (2)
O2—C1—C6124.9 (4)C2—C3—C4119.4 (4)
O2—C1—C2118.8 (3)C2—C3—H3120 (2)
C6—C1—C2116.3 (3)C4—C3—H3120 (2)
C20—O1—Ni1127.9 (2)C5—C4—C3120.9 (4)
C14—N2—C13120.6 (3)C5—C4—Cl1120.5 (3)
C14—N2—Ni1126.1 (3)C3—C4—Cl1118.6 (3)
C13—N2—Ni1113.2 (2)C5—C6—C1120.7 (4)
C4—C5—C6120.2 (4)C5—C6—C7118.9 (4)
C4—C5—H5122 (2)C1—C6—C7120.3 (3)
C6—C5—H5118 (2)C11—C12—C13120.2 (4)
C18—C19—C20122.4 (4)C11—C12—H12118 (3)
C18—C19—Br2120.7 (3)C13—C12—H12122 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5011).

References

  • Azevedo, F., Carrondo, M. A. A. F. de C. T., de Castro, B., Convery, M., Domingues, D., Freire, C., Duarte, M. T., Nielsen, K. & Santos, I. C. (1994). Inorg. Chim. Acta, 219, 43–45.
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chang, J., Shannon, E. D. & William, C. S. (2008). J. Electroanal. Chem.622, 15–21.
  • Niu, M., Liu, G., Wang, D. & Dou, J. (2009). Acta Cryst. E65, m1357. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, J., Bei, F.-L., Xu, X. Y., Yang, X. J. & Wang, X. (2003). J. Chem. Crystallogr.33, 845–849.
  • Westrip, S. P. (2010). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography