PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o739.
Published online 2010 March 3. doi:  10.1107/S1600536810006641
PMCID: PMC2983843

Benzene-1,3,5-triyl tris­(methane­sulfonate)

Abstract

In the mol­ecule of the title compound, C9H12O9S3, the two methanesulfonate groups re located one above and one below the ring plane. The C—O—S angle range is 119.3 (2)–121.1 (2)°. This conformation is different from that of the benzene analog 1,2,5-tris­(p-toluene­sulfonate), which is a three-legged ‘table’ with all fragments of the p-toluene­sulfonate on top of the benzene ring. In the crystal, the supra­molecular aggregation is completed by the presence of C—H(...)O hydrogen bonds.

Related literature

For infrared spectroscopic studies related compounds, see: Grice et al. (2000 [triangle]); Yan & Yan (2001 [triangle]). For mass spectroscopy of related compounds, see: Chavez et al. (2003 [triangle]); Olivas et al. (2008 [triangle]); Madrigal et al. (2006 [triangle]). For examples of O(...)O inter­actions, see: Raghavaiah et al. (2006 [triangle]), and for a comprehensive theoretical treatment, see: Ni et al. (2004 [triangle]). For a related structure, see:, see: Vembu et al. (2003 [triangle]). For the IR spectrum, see: Skoog et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o739-scheme1.jpg

Experimental

Crystal data

  • C9H12O9S3
  • M r = 360.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o739-efi1.jpg
  • a = 8.7810 (5) Å
  • b = 17.0053 (9) Å
  • c = 9.7746 (7) Å
  • β = 100.595 (5)°
  • V = 1434.69 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.56 mm−1
  • T = 298 K
  • 0.40 × 0.24 × 0.10 mm

Data collection

  • Bruker P4 diffractometer
  • Absorption correction: ψ scan (XSCANS; Siemens, 1996 [triangle]) T min = 0.258, T max = 0.310
  • 4418 measured reflections
  • 4176 independent reflections
  • 2333 reflections with I > 2σ(I)
  • R int = 0.048
  • 3 standard reflections every 97 reflections intensity decay: 4.3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.177
  • S = 0.92
  • 4176 reflections
  • 190 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: XSCANS (Siemens, 1996 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810006641/bg2322sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006641/bg2322Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Consejo del Sistema Nacional de Educación Tecnológica (COSNET) grant No. 497.05-P.

supplementary crystallographic information

Comment

The synthesis of supported organic compounds and dendrimers on Merrifield resin with a mesyl group and a trihydroxybenzene core has been one of our objectives; however the analysis of the supported products on the solid state is only limited to infrared spectroscopy (Grice et al., 2000; Yan et al., 2001). In our previous work we have used mass spectroscopy to characterize intermediates and products (Chavez et al., 2003; Olivas et al., 2008;. Madrigal et al., 2006). In this work, and as part of our ongoing research, we have synthesized benzene-1,3,5-triyl trimethanesulfonate using 1,3,5 trihydroxybenzene. The product (I) is an intermediate in the synthesis of complex first , second and third generation dendrimers.

As shown in Fig. 1, the molecule shows two fragments of trimethanesulfonate above and one below the plane of the benzene ring, with angles C5—O3—S2 119.3 (2)° , C1—01—S1 121.1 (2)° and C3—02—S3 120.2 (2)°. This conformation is different from the one shown by the analogue benzene 1,2,5-tris(p-toluenesulfonate), where the conformation of the molecule is described as a three-legged table (all fragments of the p-toluenesulfonate lay on the top of the benzene ring) stabilized by intramolecular C—H···O and C— H···π (Vembu et al., 2003).

In the crystal structure of (I), adjacent units are arranged like dimers via intermolecular C3—O2···(O9—S1)i, (3.035 Å, (i): 2-x,-y,1-z ) oxygen bond interactions (Fig 2). Similar interactions are described in the literature, e.g. the helical structure of sulfate anions formed by non-covalent O···O (2.9413 Å) contacts described in Raghavaiah et al. 2006, and it stresses the role of a flip-flop water chain in determining the helical arrangement of sulfate anions in the solid state. These non-covalent O···O interactions are well-established in the literature including their theoretical aspects (Ni et al. 2004). In addition, adjacent dimers are linked together via intermolecular C—H···O hydrogen bond interactions (table 2).

Experimental

The synthesis of the title compound included reagents and solvents of reagent grade, which were used without further purification. In a round bottom flask of 10 ml provided with a magnetic stirrer, was placed 0.3 g (2.3 mmol) of 1,3,5-trihydroxybenzene and 3 ml of pyridine. The flask was immersed in an ice bath and 0.58 ml (7.6 mmol) of methanesulfonyl chloride was added dropwise. The mixture was stirred for one hour and stored in the refrigerator for 24 hours. The reaction mixture was poured on to cracked ice and the precipitate was washed with a cold solution 20% of HCl (3 x 5 ml) and cold water (3 x 5 ml). The solid obtained was dried under vacuum. The yield was of 49 % of melting point: 142 °C. IR(KBr): 3099, 3027, 1602, 1458, 1367, 1182, 1110 cm-1 (Skoog, et al., 1997). 1H NMR (CDCl3): δ 7.51 (s, 3H, CH), 3.49 (s, 9H, CH3). 13C NMR (CDCl3): δ 149.7(CO), 116.3(CH), 39.1(CH3).

Crystallization.

50 mg of benzene-1,3,5-triyl trimethanesulfonate compound was placed in a glass vial and 3 ml of dimethyl sulfoxide was added. The solution was allowed to stand at room temperature for seven days and the crystals formed were separated by filtration.

Refinement

Refinement for H atoms was carried out using a riding model, with distances constrained to: 0.93 Å for aromatic CH, 0.98 Å for methine CH. Isotropic displacement parameters were fixed to Uĩso~(H)=1.2/1.5 U~eq~(carrier atom)

Figures

Fig. 1.
The title compound (I) with displacement ellipsoids drawn at a 30% probability level.
Fig. 2.
The molecules forming cyclic dimers. O—O bonds are indicated by broken lines.

Crystal data

C9H12O9S3F(000) = 744
Mr = 360.37Dx = 1.668 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 51 reflections
a = 8.7810 (5) Åθ = 4.9–12.4°
b = 17.0053 (9) ŵ = 0.56 mm1
c = 9.7746 (7) ÅT = 298 K
β = 100.595 (5)°Needle, colourless
V = 1434.69 (15) Å30.40 × 0.24 × 0.10 mm
Z = 4

Data collection

Bruker P4 diffractometer2333 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
graphiteθmax = 30.0°, θmin = 2.4°
2θ/ω scansh = 0→12
Absorption correction: ψ scan (XSCANS; Siemens, 1996)k = 0→23
Tmin = 0.258, Tmax = 0.310l = −13→13
4418 measured reflections3 standard reflections every 97 reflections
4176 independent reflections intensity decay: 4.3%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 0.92w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
4176 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = −0.33 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.88376 (11)0.16428 (6)0.42609 (9)0.0390 (2)
S20.78601 (11)0.00358 (6)−0.20344 (8)0.0376 (2)
S30.60481 (12)−0.19992 (6)0.32307 (10)0.0441 (3)
O30.6500 (3)0.00837 (15)−0.1152 (2)0.0362 (5)
O20.7498 (3)−0.14794 (15)0.3008 (3)0.0414 (6)
O10.7281 (3)0.13465 (16)0.3276 (2)0.0431 (6)
C20.7397 (4)−0.0073 (2)0.3185 (3)0.0342 (7)
H2A0.7576−0.01080.41510.041*
C60.6987 (4)0.0718 (2)0.1073 (3)0.0322 (7)
H6A0.68930.12070.06400.039*
C40.7008 (4)−0.0705 (2)0.0917 (3)0.0322 (7)
H4A0.6932−0.11590.03800.039*
C50.6872 (4)0.0031 (2)0.0319 (3)0.0307 (7)
C30.7265 (4)−0.0735 (2)0.2358 (3)0.0330 (7)
C10.7251 (4)0.0646 (2)0.2512 (3)0.0323 (7)
O50.7038 (4)−0.00487 (19)−0.3418 (3)0.0606 (9)
O40.8956 (4)−0.05374 (18)−0.1437 (3)0.0564 (8)
C70.8698 (5)0.0967 (2)−0.1803 (4)0.0463 (9)
H7A0.95410.1000−0.23020.069*
H7B0.90790.1056−0.08300.069*
H7C0.79360.1359−0.21480.069*
O90.9613 (4)0.09894 (18)0.4963 (3)0.0619 (9)
O80.8301 (4)0.22633 (19)0.5033 (3)0.0602 (8)
O70.4863 (4)−0.19317 (19)0.2031 (3)0.0626 (8)
O60.6727 (4)−0.27378 (18)0.3633 (4)0.0759 (10)
C90.9942 (5)0.2029 (3)0.3109 (5)0.0559 (11)
H9B1.09060.22230.36220.084*
H9C0.93850.24520.25900.084*
H9D1.01430.16250.24790.084*
C80.5441 (6)−0.1548 (3)0.4643 (5)0.0608 (12)
H8B0.4558−0.18230.48550.091*
H8C0.5165−0.10120.44130.091*
H8D0.6267−0.15620.54360.091*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0487 (5)0.0386 (5)0.0283 (4)−0.0024 (4)0.0034 (4)−0.0045 (4)
S20.0461 (5)0.0422 (5)0.0263 (4)0.0004 (4)0.0117 (3)−0.0044 (4)
S30.0552 (6)0.0307 (5)0.0477 (5)−0.0008 (4)0.0132 (4)0.0047 (4)
O30.0369 (12)0.0483 (15)0.0229 (10)−0.0022 (11)0.0046 (9)−0.0009 (10)
O20.0424 (14)0.0375 (14)0.0441 (14)0.0047 (11)0.0076 (11)0.0099 (11)
O10.0468 (15)0.0410 (14)0.0376 (13)0.0089 (12)−0.0021 (11)−0.0150 (11)
C20.0375 (17)0.0410 (19)0.0238 (14)0.0003 (15)0.0043 (12)0.0003 (14)
C60.0343 (17)0.0335 (17)0.0283 (15)0.0000 (14)0.0042 (13)−0.0020 (13)
C40.0338 (17)0.0338 (17)0.0296 (16)−0.0035 (14)0.0072 (13)−0.0048 (13)
C50.0297 (15)0.0382 (17)0.0244 (14)−0.0032 (14)0.0056 (12)−0.0015 (14)
C30.0316 (17)0.0335 (17)0.0341 (16)0.0002 (14)0.0062 (14)0.0028 (14)
C10.0325 (17)0.0363 (18)0.0287 (15)0.0047 (14)0.0066 (13)−0.0075 (14)
O50.076 (2)0.081 (2)0.0242 (12)−0.0115 (18)0.0093 (13)−0.0115 (13)
O40.0625 (19)0.0546 (18)0.0561 (17)0.0207 (15)0.0218 (14)−0.0017 (14)
C70.046 (2)0.048 (2)0.046 (2)−0.0071 (18)0.0088 (18)0.0034 (18)
O90.069 (2)0.0528 (18)0.0534 (17)−0.0063 (15)−0.0173 (15)0.0123 (14)
O80.069 (2)0.066 (2)0.0465 (16)−0.0050 (16)0.0130 (14)−0.0271 (15)
O70.065 (2)0.0585 (19)0.0591 (18)−0.0198 (16)−0.0012 (16)−0.0021 (15)
O60.095 (3)0.0401 (17)0.099 (3)0.0165 (17)0.036 (2)0.0248 (17)
C90.071 (3)0.044 (2)0.059 (2)−0.005 (2)0.028 (2)−0.002 (2)
C80.073 (3)0.062 (3)0.053 (2)0.001 (2)0.028 (2)0.001 (2)

Geometric parameters (Å, °)

S1—O91.413 (3)C2—H2A0.9300
S1—O81.427 (3)C6—C51.375 (5)
S1—O11.601 (3)C6—C11.389 (4)
S1—C91.744 (4)C6—H6A0.9300
S2—O41.418 (3)C4—C51.377 (5)
S2—O51.418 (3)C4—C31.385 (4)
S2—O31.598 (3)C4—H4A0.9300
S2—C71.744 (4)C7—H7A0.9600
S3—O61.415 (3)C7—H7B0.9600
S3—O71.422 (3)C7—H7C0.9600
S3—O21.598 (3)C9—H9B0.9600
S3—C81.745 (4)C9—H9C0.9600
O3—C51.417 (4)C9—H9D0.9600
O2—C31.414 (4)C8—H8B0.9600
O1—C11.404 (4)C8—H8C0.9600
C2—C31.379 (5)C8—H8D0.9600
C2—C11.383 (5)
O9—S1—O8120.1 (2)C3—C4—H4A121.6
O9—S1—O1109.04 (16)C6—C5—C4123.5 (3)
O8—S1—O1102.84 (16)C6—C5—O3118.1 (3)
O9—S1—C9109.5 (2)C4—C5—O3118.3 (3)
O8—S1—C9109.9 (2)C2—C3—C4123.1 (3)
O1—S1—C9104.17 (19)C2—C3—O2118.5 (3)
O4—S2—O5120.70 (19)C4—C3—O2118.2 (3)
O4—S2—O3109.32 (16)C2—C1—C6122.9 (3)
O5—S2—O3102.73 (16)C2—C1—O1120.4 (3)
O4—S2—C7109.43 (19)C6—C1—O1116.6 (3)
O5—S2—C7110.14 (19)S2—C7—H7A109.5
O3—S2—C7102.88 (17)S2—C7—H7B109.5
O6—S3—O7120.5 (2)H7A—C7—H7B109.5
O6—S3—O2102.92 (19)S2—C7—H7C109.5
O7—S3—O2108.86 (16)H7A—C7—H7C109.5
O6—S3—C8110.1 (2)H7B—C7—H7C109.5
O7—S3—C8109.5 (2)S1—C9—H9B109.5
O2—S3—C8103.4 (2)S1—C9—H9C109.5
C5—O3—S2119.3 (2)H9B—C9—H9C109.5
C3—O2—S3120.2 (2)S1—C9—H9D109.5
C1—O1—S1121.1 (2)H9B—C9—H9D109.5
C3—C2—C1116.9 (3)H9C—C9—H9D109.5
C3—C2—H2A121.5S3—C8—H8B109.5
C1—C2—H2A121.5S3—C8—H8C109.5
C5—C6—C1116.8 (3)H8B—C8—H8C109.5
C5—C6—H6A121.6S3—C8—H8D109.5
C1—C6—H6A121.6H8B—C8—H8D109.5
C5—C4—C3116.8 (3)H8C—C8—H8D109.5
C5—C4—H4A121.6
O4—S2—O3—C539.6 (3)S2—O3—C5—C4−85.2 (3)
O5—S2—O3—C5168.9 (3)C1—C2—C3—C40.4 (5)
C7—S2—O3—C5−76.7 (3)C1—C2—C3—O2176.3 (3)
O6—S3—O2—C3168.7 (3)C5—C4—C3—C2−0.6 (5)
O7—S3—O2—C339.7 (3)C5—C4—C3—O2−176.4 (3)
C8—S3—O2—C3−76.6 (3)S3—O2—C3—C298.7 (3)
O9—S1—O1—C1−40.3 (3)S3—O2—C3—C4−85.2 (3)
O8—S1—O1—C1−168.7 (3)C3—C2—C1—C6−0.1 (5)
C9—S1—O1—C176.6 (3)C3—C2—C1—O1176.3 (3)
C1—C6—C5—C4−0.2 (5)C5—C6—C1—C20.0 (5)
C1—C6—C5—O3175.9 (3)C5—C6—C1—O1−176.5 (3)
C3—C4—C5—C60.4 (5)S1—O1—C1—C269.1 (4)
C3—C4—C5—O3−175.6 (3)S1—O1—C1—C6−114.3 (3)
S2—O3—C5—C698.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2A···O5i0.932.513.392 (4)159
C9—H9D···O4ii0.962.323.259 (5)166
C4—H4A···O6iii0.932.523.444 (4)172
C9—H9C···O8iv0.962.553.312 (5)136

Symmetry codes: (i) x, y, z+1; (ii) −x+2, −y, −z; (iii) x, −y−1/2, z−1/2; (iv) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2322).

References

  • Chavez, D., Ochoa, A., Madrigal, D., Castillo, M., Espinoza, K., González, T., Velez, E., Melendez, J., Garcia, D. & Rivero, I. A. (2003). J. Comb. Chem.5, 149–154. [PubMed]
  • Grice, P., Leach, A. G., Ley, S. V., Massi, A. & Mynett, D. M. (2000). J. Comb. Chem.2, 491–495. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Madrigal, D., Pina-Luis, G. & Rivero, I. A. (2006). J. Mex. Chem. Soc.5, 175–179
  • Ni, B., Lee, K.-H. & Sinnott, S. B. (2004). J. Phys. Condens. Matter, 16, 7261–7275
  • Olivas, A., Zepeda, T. A. & Madrigal, D. (2008). Mater. Res. Innov.12, 12–17.
  • Raghavaiah, P., Supriya, S. & Das, S. K. (2006). Chem. Commun pp. 7262–2764 [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Skoog, A. D., Holler, F. J. & Nieman, T. A. (1997). Principles of Instrumental Analysis, 5th ed., pp. 380–428. Philadelphia: Brooks College Publishing
  • Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003). Acta Cryst. E59, o1019–o1021.
  • Yan, B. & Yan, H. (2001). J. Comb. Chem.3, 78–84. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography