PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o862.
Published online 2010 March 17. doi:  10.1107/S1600536810009359
PMCID: PMC2983842

3-Benzoyl-4-hydr­oxy-2H-1,2-benzothia­zine 1,1-dioxide

Abstract

There are two mol­ecules in the asymmetric unit of the title compound, C15H11NO4S. The heterocyclic thia­zine rings in both mol­ecules adopt half-chair conformations with the S and N atoms displaced by 0.455 (4) and 0.254 (4) Å, respectively, in one mol­ecule, and 0.480 (4) and 0.224 (5) Å in the other, on opposite sides of the mean planes formed by the remaining ring atoms. The crystal structure is stabilized by inter­molecular N—H(...)O and C—H(...)O hydrogen bonds. In addition, intra­molecular O—H(...)O inter­actions are also present.

Related literature

For the biological activity of 1,2-benzothia­zine derivatives, see: Ahmad et al. (2010 [triangle]); Lombardino et al. (1971 [triangle], 1973 [triangle]). For the synthesis of benzothia­zine derivatives, see: Siddiqui et al. (2007 [triangle]). For comparison of bond distancess, see: Allen (2002 [triangle]). For related structures, see: Siddiqui et al. (2008 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-66-0o862-scheme1.jpg

Experimental

Crystal data

  • C15H11NO4S
  • M r = 301.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o862-efi1.jpg
  • a = 13.8675 (4) Å
  • b = 7.6289 (2) Å
  • c = 25.7553 (9) Å
  • β = 102.4519 (12)°
  • V = 2660.66 (14) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 173 K
  • 0.12 × 0.11 × 0.08 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1997 [triangle]) T min = 0.970, T max = 0.980
  • 10424 measured reflections
  • 5971 independent reflections
  • 5100 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.119
  • S = 1.09
  • 5971 reflections
  • 391 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.45 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810009359/jh2134sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810009359/jh2134Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HLS is grateful to the Institute of Chemistry, University of the Punjab for financial support.

supplementary crystallographic information

Comment

Benzothiazine derivatives, e.g., 4-hydroxy-2-methyl-2H-1,2-benzothiazine-3-carboxamides 1,1-dioxides, are potent anti-inflammatory agents (Lombardino et al., 1971, 1973). In continuation of our research project on the development of new benzothiazine derivatives with bioactivity potential (Ahmad et al., 2010; Siddiqui et al., 2007), we report the synthesis and crystal structure of the title compound in this article.

The structure of the title compound is composed of two molecules, A (Fig. 1) and B (Fig. 2) in an asymmetric unit. The bond distances and angles are as expected (Allen, 2002) and agree with the cortresponding bond distances and angles reported in closely related compounds (Siddiqui et al., 2008). The heterocyclic thiazine rings in both molecules adopt half chair conformation with atoms S and N displaced by 0.455 (4) and 0.254 (4) Å in molecule A and 0.480 (4) and 0.224 (5) Å, respectively, in molecule B, on the opposite sides from the mean planes formed by the remaining ring atoms.

The structure is stabilized by intermolecular hydrogen bonds of the types N—H···O and C—H···O. In addition, intramolecular interactions of the type O—H···O are also present consolidating the crystal packing; details have been provided in Tab. 1 and Fig. 3. It is intersing to note that N1 is involved in intermolecular and intramolecular interactions while N2 is devoid of any such interactions.

Experimental

N-phenacylsaccharin (5.0 g, 16.6 mmoles) was added to a solution of sodium metal (2.7 g) in dry methanol (50 ml). The mixture was subjected to reflux for half an hour. The contents of the flask were cooled to room temperature and then poured on ice cold HCl (50 ml, 5%). Off white precipitates of the title compound were formed which were filtered off and were washed with excess distilled water. Crystals suitable for crystallographic study were grown from a solution of chloroform/methanol (4:1); yield = 3.5 g, 70%; m.p. = 429-430 K.

Refinement

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms bonded to C-atoms were included at geometrically idealized positions and refined in riding-model approximation with C—H = 0.95 Å; the H-atoms bonded to N and O were allowed to refine. The Uiso(H) were allowed at 1.2Ueq(parent atom). The final difference map was essentially featurless.

Figures

Fig. 1.
The molecule A of the title compound with the displacement ellipsoids plotted at 50% probability level (Farrugia, 1997).
Fig. 2.
The molecule B of the title compound with the displacement ellipsoids plotted at 50% probability level (Farrugia, 1997).
Fig. 3.
A part of the unit cell showing intermolecular and intrmolecular hydrogen bonds by dashed lines; the H-atoms not involved in H-bonds have been excluded for clarity.

Crystal data

C15H11NO4SF(000) = 1248
Mr = 301.31Dx = 1.504 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5113 reflections
a = 13.8675 (4) Åθ = 1.0–27.5°
b = 7.6289 (2) ŵ = 0.26 mm1
c = 25.7553 (9) ÅT = 173 K
β = 102.4519 (12)°Block, yellow
V = 2660.66 (14) Å30.12 × 0.11 × 0.08 mm
Z = 8

Data collection

Nonius KappaCCD diffractometer5971 independent reflections
Radiation source: fine-focus sealed tube5100 reflections with I > 2σ(I)
graphiteRint = 0.034
ω and [var phi] scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (SORTAV; Blessing, 1997)h = −17→18
Tmin = 0.970, Tmax = 0.980k = −9→9
10424 measured reflectionsl = −33→33

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.09w = 1/[σ2(Fo2) + (0.0348P)2 + 2.7188P] where P = (Fo2 + 2Fc2)/3
5971 reflections(Δ/σ)max < 0.001
391 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = −0.44 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.26603 (4)0.49396 (7)−0.15139 (2)0.02569 (13)
S20.26612 (4)0.00960 (7)0.14780 (2)0.02805 (13)
O10.34849 (11)0.3951 (2)−0.16022 (6)0.0392 (4)
O20.26099 (11)0.6780 (2)−0.16221 (6)0.0338 (4)
O3−0.00584 (11)0.5375 (2)−0.10052 (6)0.0344 (4)
H3O0.0138 (19)0.580 (3)−0.0643 (12)0.041*
O40.08737 (11)0.6136 (2)−0.01058 (6)0.0365 (4)
O50.24183 (12)0.1891 (2)0.15448 (6)0.0367 (4)
O60.20854 (12)−0.1254 (2)0.16478 (6)0.0362 (4)
O70.49817 (12)0.1805 (2)0.07325 (7)0.0386 (4)
H7O0.467 (2)0.200 (4)0.0367 (12)0.046*
O80.37534 (12)0.1864 (2)−0.01398 (6)0.0392 (4)
N10.25817 (13)0.4634 (2)−0.08997 (7)0.0255 (4)
H1N0.2839 (18)0.370 (3)−0.0763 (10)0.031*
N20.26406 (13)−0.0224 (2)0.08502 (7)0.0277 (4)
H2N0.2516 (18)−0.123 (4)0.0752 (10)0.033*
C10.15563 (15)0.4015 (3)−0.18693 (8)0.0257 (4)
C20.15101 (18)0.3292 (3)−0.23688 (9)0.0333 (5)
H20.20860.3204−0.25110.040*
C30.0605 (2)0.2700 (3)−0.26569 (9)0.0401 (6)
H30.05570.2224−0.30020.048*
C4−0.02274 (19)0.2799 (3)−0.24437 (9)0.0391 (6)
H4−0.08410.2378−0.26430.047*
C5−0.01775 (17)0.3508 (3)−0.19421 (9)0.0322 (5)
H5−0.07530.3561−0.17990.039*
C60.07235 (15)0.4143 (3)−0.16478 (8)0.0254 (4)
C70.07853 (15)0.4912 (3)−0.11193 (8)0.0252 (4)
C80.16798 (14)0.5127 (3)−0.07560 (8)0.0237 (4)
C90.16839 (15)0.5735 (3)−0.02290 (8)0.0259 (4)
C100.25834 (14)0.5793 (3)0.02069 (8)0.0244 (4)
C110.24653 (16)0.5335 (3)0.07145 (8)0.0281 (4)
H110.18360.49780.07650.034*
C120.32640 (16)0.5397 (3)0.11451 (9)0.0310 (5)
H120.31820.50730.14890.037*
C130.41781 (16)0.5932 (3)0.10724 (9)0.0334 (5)
H130.47240.59780.13670.040*
C140.43023 (16)0.6402 (3)0.05692 (9)0.0349 (5)
H140.49310.67780.05230.042*
C150.35116 (16)0.6326 (3)0.01342 (9)0.0306 (5)
H150.36000.6633−0.02100.037*
C160.39179 (16)−0.0183 (3)0.17731 (8)0.0273 (4)
C170.42052 (18)−0.0878 (3)0.22798 (9)0.0325 (5)
H170.3726−0.12770.24660.039*
C180.52034 (18)−0.0982 (3)0.25096 (9)0.0375 (5)
H180.5414−0.14620.28560.045*
C190.58960 (18)−0.0385 (3)0.22344 (10)0.0390 (5)
H190.6579−0.04470.23970.047*
C200.56077 (17)0.0299 (3)0.17279 (9)0.0345 (5)
H200.60910.07120.15460.041*
C210.46065 (16)0.0384 (3)0.14820 (8)0.0270 (4)
C220.42919 (16)0.0983 (3)0.09300 (9)0.0277 (4)
C230.33618 (15)0.0685 (3)0.06266 (8)0.0263 (4)
C240.31153 (16)0.1149 (3)0.00718 (9)0.0293 (4)
C250.21394 (16)0.0753 (3)−0.02777 (8)0.0279 (4)
C260.21372 (17)0.0020 (3)−0.07754 (9)0.0322 (5)
H260.2744−0.0279−0.08680.039*
C270.12542 (19)−0.0269 (3)−0.11332 (9)0.0380 (5)
H270.1252−0.0804−0.14660.046*
C280.03701 (18)0.0222 (3)−0.10051 (10)0.0368 (5)
H28−0.02360.0037−0.12530.044*
C290.03689 (17)0.0983 (3)−0.05150 (10)0.0355 (5)
H29−0.02370.1342−0.04320.043*
C300.12487 (16)0.1219 (3)−0.01456 (9)0.0309 (5)
H300.12450.16950.01950.037*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0246 (3)0.0329 (3)0.0208 (2)−0.0011 (2)0.00740 (19)0.00065 (19)
S20.0320 (3)0.0295 (3)0.0255 (3)−0.0025 (2)0.0125 (2)0.0031 (2)
O10.0309 (8)0.0580 (11)0.0314 (8)0.0087 (8)0.0122 (7)−0.0032 (8)
O20.0362 (8)0.0348 (8)0.0305 (8)−0.0102 (7)0.0072 (7)0.0043 (7)
O30.0214 (7)0.0516 (10)0.0303 (8)0.0001 (7)0.0057 (6)−0.0036 (7)
O40.0257 (8)0.0555 (10)0.0299 (8)0.0021 (7)0.0096 (6)−0.0074 (7)
O50.0463 (9)0.0317 (8)0.0369 (9)0.0050 (7)0.0196 (7)0.0028 (7)
O60.0373 (9)0.0413 (9)0.0326 (8)−0.0091 (7)0.0133 (7)0.0082 (7)
O70.0328 (8)0.0504 (10)0.0343 (9)−0.0122 (8)0.0114 (7)0.0062 (8)
O80.0379 (9)0.0531 (10)0.0296 (8)−0.0098 (8)0.0138 (7)0.0070 (7)
N10.0236 (8)0.0339 (9)0.0192 (8)0.0037 (7)0.0052 (6)0.0028 (7)
N20.0320 (10)0.0278 (9)0.0252 (9)−0.0069 (8)0.0101 (7)0.0008 (7)
C10.0305 (10)0.0254 (10)0.0206 (9)−0.0019 (8)0.0043 (8)0.0022 (8)
C20.0451 (13)0.0304 (11)0.0253 (11)−0.0003 (10)0.0096 (9)−0.0007 (9)
C30.0595 (16)0.0334 (12)0.0246 (11)−0.0095 (11)0.0029 (10)−0.0048 (9)
C40.0473 (14)0.0322 (12)0.0320 (12)−0.0120 (10)−0.0047 (10)−0.0006 (9)
C50.0332 (11)0.0314 (11)0.0294 (11)−0.0074 (9)0.0011 (9)0.0053 (9)
C60.0290 (10)0.0226 (10)0.0237 (10)−0.0032 (8)0.0036 (8)0.0032 (8)
C70.0249 (10)0.0275 (10)0.0242 (10)−0.0024 (8)0.0077 (8)0.0041 (8)
C80.0226 (9)0.0285 (10)0.0207 (9)−0.0001 (8)0.0064 (7)0.0025 (8)
C90.0239 (10)0.0294 (10)0.0247 (10)−0.0030 (8)0.0062 (8)0.0002 (8)
C100.0246 (10)0.0270 (10)0.0222 (10)−0.0026 (8)0.0064 (8)−0.0020 (8)
C110.0304 (11)0.0291 (10)0.0257 (10)−0.0052 (8)0.0081 (8)−0.0016 (8)
C120.0350 (11)0.0323 (11)0.0241 (10)−0.0024 (9)0.0025 (9)0.0039 (8)
C130.0295 (11)0.0357 (12)0.0313 (12)−0.0021 (9)−0.0019 (9)0.0002 (9)
C140.0257 (10)0.0437 (13)0.0353 (12)−0.0075 (10)0.0067 (9)−0.0025 (10)
C150.0299 (11)0.0372 (12)0.0259 (10)−0.0064 (9)0.0089 (9)−0.0007 (9)
C160.0327 (11)0.0238 (10)0.0262 (10)−0.0042 (8)0.0085 (8)−0.0033 (8)
C170.0428 (12)0.0281 (11)0.0274 (11)−0.0034 (9)0.0098 (9)0.0017 (9)
C180.0494 (15)0.0318 (12)0.0282 (11)−0.0005 (10)0.0018 (10)0.0030 (9)
C190.0361 (12)0.0381 (13)0.0394 (13)0.0030 (10)0.0005 (10)−0.0020 (10)
C200.0351 (12)0.0343 (12)0.0352 (12)−0.0036 (9)0.0103 (10)−0.0059 (10)
C210.0326 (11)0.0237 (10)0.0258 (10)−0.0029 (8)0.0090 (8)−0.0026 (8)
C220.0316 (11)0.0262 (10)0.0282 (11)−0.0041 (8)0.0128 (9)−0.0019 (8)
C230.0304 (10)0.0264 (10)0.0252 (10)−0.0027 (8)0.0128 (8)0.0000 (8)
C240.0344 (11)0.0288 (11)0.0270 (11)−0.0014 (9)0.0113 (9)−0.0006 (8)
C250.0357 (11)0.0242 (10)0.0253 (10)−0.0021 (8)0.0101 (9)0.0043 (8)
C260.0359 (12)0.0363 (12)0.0261 (11)0.0039 (9)0.0107 (9)0.0013 (9)
C270.0462 (14)0.0391 (13)0.0272 (11)0.0012 (11)0.0050 (10)−0.0018 (10)
C280.0369 (12)0.0381 (13)0.0334 (12)−0.0016 (10)0.0029 (10)0.0073 (10)
C290.0342 (12)0.0343 (12)0.0409 (13)0.0023 (10)0.0148 (10)0.0094 (10)
C300.0378 (12)0.0283 (11)0.0292 (11)−0.0003 (9)0.0130 (9)0.0017 (9)

Geometric parameters (Å, °)

S1—O11.4283 (16)C11—C121.389 (3)
S1—O21.4303 (17)C11—H110.9500
S1—N11.6257 (17)C12—C131.382 (3)
S1—C11.753 (2)C12—H120.9500
S2—O61.4281 (16)C13—C141.391 (3)
S2—O51.4296 (17)C13—H130.9500
S2—N21.6294 (19)C14—C151.390 (3)
S2—C161.757 (2)C14—H140.9500
O3—C71.314 (2)C15—H150.9500
O3—H3O0.97 (3)C16—C171.385 (3)
O4—C91.269 (2)C16—C211.404 (3)
O7—C221.333 (2)C17—C181.385 (3)
O7—H7O0.96 (3)C17—H170.9500
O8—C241.259 (3)C18—C191.388 (3)
N1—C81.429 (2)C18—H180.9500
N1—H1N0.84 (3)C19—C201.382 (3)
N2—C231.436 (3)C19—H190.9500
N2—H2N0.82 (3)C20—C211.398 (3)
C1—C21.389 (3)C20—H200.9500
C1—C61.397 (3)C21—C221.467 (3)
C2—C31.389 (3)C22—C231.375 (3)
C2—H20.9500C23—C241.440 (3)
C3—C41.383 (4)C24—C251.486 (3)
C3—H30.9500C25—C301.396 (3)
C4—C51.388 (3)C25—C261.398 (3)
C4—H40.9500C26—C271.382 (3)
C5—C61.401 (3)C26—H260.9500
C5—H50.9500C27—C281.388 (3)
C6—C71.468 (3)C27—H270.9500
C7—C81.393 (3)C28—C291.390 (3)
C8—C91.433 (3)C28—H280.9500
C9—C101.488 (3)C29—C301.388 (3)
C10—C111.397 (3)C29—H290.9500
C10—C151.400 (3)C30—H300.9500
O1—S1—O2119.62 (10)C11—C12—H12120.0
O1—S1—N1107.65 (10)C12—C13—C14120.2 (2)
O2—S1—N1108.64 (10)C12—C13—H13119.9
O1—S1—C1110.09 (10)C14—C13—H13119.9
O2—S1—C1107.01 (10)C15—C14—C13120.4 (2)
N1—S1—C1102.49 (9)C15—C14—H14119.8
O6—S2—O5119.47 (10)C13—C14—H14119.8
O6—S2—N2107.73 (10)C14—C15—C10119.5 (2)
O5—S2—N2107.98 (10)C14—C15—H15120.2
O6—S2—C16110.37 (10)C10—C15—H15120.2
O5—S2—C16107.55 (10)C17—C16—C21122.1 (2)
N2—S2—C16102.38 (10)C17—C16—S2120.70 (17)
C7—O3—H3O103.1 (15)C21—C16—S2117.20 (17)
C22—O7—H7O103.9 (16)C16—C17—C18118.8 (2)
C8—N1—S1117.40 (14)C16—C17—H17120.6
C8—N1—H1N115.7 (17)C18—C17—H17120.6
S1—N1—H1N114.6 (17)C17—C18—C19120.1 (2)
C23—N2—S2117.47 (15)C17—C18—H18120.0
C23—N2—H2N116.7 (18)C19—C18—H18120.0
S2—N2—H2N114.0 (18)C20—C19—C18121.0 (2)
C2—C1—C6121.9 (2)C20—C19—H19119.5
C2—C1—S1120.28 (17)C18—C19—H19119.5
C6—C1—S1117.65 (15)C19—C20—C21120.2 (2)
C1—C2—C3118.7 (2)C19—C20—H20119.9
C1—C2—H2120.7C21—C20—H20119.9
C3—C2—H2120.7C20—C21—C16117.9 (2)
C4—C3—C2120.4 (2)C20—C21—C22120.82 (19)
C4—C3—H3119.8C16—C21—C22121.28 (19)
C2—C3—H3119.8O7—C22—C23121.55 (19)
C3—C4—C5120.8 (2)O7—C22—C21115.35 (19)
C3—C4—H4119.6C23—C22—C21123.07 (18)
C5—C4—H4119.6C22—C23—N2120.07 (18)
C4—C5—C6119.9 (2)C22—C23—C24121.07 (18)
C4—C5—H5120.1N2—C23—C24118.69 (19)
C6—C5—H5120.1O8—C24—C23119.8 (2)
C1—C6—C5118.30 (19)O8—C24—C25117.33 (19)
C1—C6—C7121.23 (18)C23—C24—C25122.79 (18)
C5—C6—C7120.46 (19)C30—C25—C26119.9 (2)
O3—C7—C8121.67 (19)C30—C25—C24122.61 (19)
O3—C7—C6115.97 (18)C26—C25—C24117.28 (19)
C8—C7—C6122.37 (18)C27—C26—C25120.1 (2)
C7—C8—N1119.84 (18)C27—C26—H26119.9
C7—C8—C9119.69 (18)C25—C26—H26119.9
N1—C8—C9120.35 (17)C26—C27—C28120.0 (2)
O4—C9—C8119.47 (18)C26—C27—H27120.0
O4—C9—C10116.58 (18)C28—C27—H27120.0
C8—C9—C10123.76 (18)C27—C28—C29120.2 (2)
C11—C10—C15119.64 (19)C27—C28—H28119.9
C11—C10—C9116.76 (18)C29—C28—H28119.9
C15—C10—C9123.57 (18)C30—C29—C28120.3 (2)
C12—C11—C10120.3 (2)C30—C29—H29119.9
C12—C11—H11119.8C28—C29—H29119.9
C10—C11—H11119.8C29—C30—C25119.5 (2)
C13—C12—C11119.9 (2)C29—C30—H30120.2
C13—C12—H12120.0C25—C30—H30120.2
O1—S1—N1—C8−164.69 (16)C13—C14—C15—C100.9 (4)
O2—S1—N1—C864.40 (17)C11—C10—C15—C14−0.4 (3)
C1—S1—N1—C8−48.61 (18)C9—C10—C15—C14177.5 (2)
O6—S2—N2—C23−164.50 (16)O6—S2—C16—C17−33.0 (2)
O5—S2—N2—C2365.20 (18)O5—S2—C16—C1798.90 (19)
C16—S2—N2—C23−48.12 (18)N2—S2—C16—C17−147.47 (18)
O1—S1—C1—C2−36.5 (2)O6—S2—C16—C21149.25 (16)
O2—S1—C1—C294.97 (19)O5—S2—C16—C21−78.84 (18)
N1—S1—C1—C2−150.81 (18)N2—S2—C16—C2134.79 (18)
O1—S1—C1—C6147.68 (16)C21—C16—C17—C181.4 (3)
O2—S1—C1—C6−80.85 (18)S2—C16—C17—C18−176.28 (17)
N1—S1—C1—C633.37 (18)C16—C17—C18—C190.4 (3)
C6—C1—C2—C30.8 (3)C17—C18—C19—C20−0.8 (4)
S1—C1—C2—C3−174.87 (17)C18—C19—C20—C21−0.6 (4)
C1—C2—C3—C4−1.3 (4)C19—C20—C21—C162.2 (3)
C2—C3—C4—C50.7 (4)C19—C20—C21—C22−175.4 (2)
C3—C4—C5—C60.5 (3)C17—C16—C21—C20−2.7 (3)
C2—C1—C6—C50.4 (3)S2—C16—C21—C20175.06 (16)
S1—C1—C6—C5176.13 (16)C17—C16—C21—C22174.9 (2)
C2—C1—C6—C7−180.0 (2)S2—C16—C21—C22−7.4 (3)
S1—C1—C6—C7−4.2 (3)C20—C21—C22—O7−15.2 (3)
C4—C5—C6—C1−1.0 (3)C16—C21—C22—O7167.30 (19)
C4—C5—C6—C7179.4 (2)C20—C21—C22—C23163.1 (2)
C1—C6—C7—O3163.40 (19)C16—C21—C22—C23−14.4 (3)
C5—C6—C7—O3−17.0 (3)O7—C22—C23—N2179.2 (2)
C1—C6—C7—C8−17.3 (3)C21—C22—C23—N21.1 (3)
C5—C6—C7—C8162.4 (2)O7—C22—C23—C244.1 (3)
O3—C7—C8—N1−178.91 (18)C21—C22—C23—C24−174.0 (2)
C6—C7—C8—N11.8 (3)S2—N2—C23—C2234.4 (3)
O3—C7—C8—C95.1 (3)S2—N2—C23—C24−150.31 (17)
C6—C7—C8—C9−174.25 (19)C22—C23—C24—O8−1.1 (3)
S1—N1—C8—C735.2 (3)N2—C23—C24—O8−176.3 (2)
S1—N1—C8—C9−148.77 (16)C22—C23—C24—C25176.2 (2)
C7—C8—C9—O4−2.7 (3)N2—C23—C24—C251.0 (3)
N1—C8—C9—O4−178.73 (19)O8—C24—C25—C30−130.8 (2)
C7—C8—C9—C10172.00 (19)C23—C24—C25—C3051.8 (3)
N1—C8—C9—C10−4.0 (3)O8—C24—C25—C2643.7 (3)
O4—C9—C10—C1133.7 (3)C23—C24—C25—C26−133.7 (2)
C8—C9—C10—C11−141.1 (2)C30—C25—C26—C27−1.0 (3)
O4—C9—C10—C15−144.3 (2)C24—C25—C26—C27−175.7 (2)
C8—C9—C10—C1540.9 (3)C25—C26—C27—C282.1 (4)
C15—C10—C11—C12−0.3 (3)C26—C27—C28—C29−0.9 (4)
C9—C10—C11—C12−178.4 (2)C27—C28—C29—C30−1.5 (3)
C10—C11—C12—C130.6 (3)C28—C29—C30—C252.6 (3)
C11—C12—C13—C14−0.2 (4)C26—C25—C30—C29−1.3 (3)
C12—C13—C14—C15−0.6 (4)C24—C25—C30—C29173.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O80.84 (3)2.30 (3)3.093 (3)159 (2)
O3—H3O···O40.97 (3)1.55 (3)2.466 (2)155 (2)
O7—H7O···O80.96 (3)1.62 (3)2.510 (2)153 (3)
C2—H2···O5i0.952.573.310 (3)135
C13—H13···O1ii0.952.433.235 (3)143
C14—H14···O8ii0.952.483.396 (3)162
C15—H15···N10.952.532.990 (3)110

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2134).

References

  • Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem.45, 698–704. [PubMed]
  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Lombardino, J. G., Wiseman, E. H. & Chiaini, J. (1973). J. Med. Chem.16, 493–496. [PubMed]
  • Lombardino, J. G., Wiseman, E. H. & McLamore, W. M. (1971). J. Med. Chem.14, 1171–1177. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun.37, 767–773.
  • Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography