PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o933.
Published online 2010 March 27. doi:  10.1107/S1600536810008883
PMCID: PMC2983833

(20S)-20-Acetamido-18-chloro-5α-pregnan-3β-yl acetate

Abstract

In the title compound, C25H40ClNO3, prepared by the thermolysis of (20S)-O,N-diacetyl-20-amino-N-chloro-3β-hydr­oxy-5α-pregnane, the three six-membered rings adopt chair conformations while the five-membered ring is in an envelope conformation. The ester group attached to ring A is in an equatorial position. All the rings are trans-fused. Intra­molecular C—H(...)O and C—H(...)Cl inter­actions occur. The crystal structure is stabilized by inter­molecular N—H(...)O and C—H(...)O inter­actions close contacts occur.

Related literature

For background literature on the functionalization of the 18-methyl group of steroids, see: Pellissier & Santelli (2001 [triangle]). For the thermolysis of N-chloro­amides to achieve remote-site functionalizations, see: Edwards et al. (1971 [triangle]); Benn & Vohra, (1976 [triangle]); Vohra (1973 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]). For the preparation of (20S)-20-acetamido-3β-acet­oxy-5α-pregnane, see: Rej et al. (1976 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o933-scheme1.jpg

Experimental

Crystal data

  • C25H40ClNO3
  • M r = 438.03
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o933-efi1.jpg
  • a = 7.6604 (4) Å
  • b = 9.7796 (4) Å
  • c = 16.8301 (8) Å
  • β = 96.398 (2)°
  • V = 1252.98 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.18 mm−1
  • T = 173 K
  • 0.28 × 0.12 × 0.04 mm

Data collection

  • Nonius diffractometer with Bruker APEXII CCD detector
  • Absorption correction: multi-scan (SORTAV; Blessing, 1997 [triangle]) T min = 0.952, T max = 0.993
  • 9843 measured reflections
  • 5254 independent reflections
  • 4999 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.154
  • S = 1.13
  • 5254 reflections
  • 275 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.74 e Å−3
  • Δρmin = −0.25 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2026 Friedel pairs
  • Flack parameter: 0.04 (9)

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810008883/fb2184sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008883/fb2184Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As an addition to the methods for the functionalisation of the 18-methyl group of the steroid system (Pellissier & Santelli, 2001) we utilized the thermolysis of an N-chloroamide: a procedure based on the known preference for a six-membered transition state in the abstraction of a hydrogen atom by a thermally generated N-centred amidyl radical (Edwards et al., 1971). In this paper, we report the preparation, crystal structure and absolute configuration of the title compound prepared by the thermolysis of N-chloro-O, N-diacetyl-20S-amino-3β-hydroxy-5α-pregnane.

The title molecule is presented in Fig. 1. The molecule contains three six-membered rings A, B and C and a five-membered ring D (Fig. 2). All the rings are trans-fused. The rings A—C adopt chair conformations. The puckering parameters (Cremer & Pople, 1975) for the rings A to C are: Q = 0.581 (4), 0.579 (3), 0.581 (3) Å, θ = 1.6 (4), 3.5 (3), 0.0 (3)° and [var phi] = 259 (23), 333 (7), 182 (15) °, respectively. The ring D adopts an envelope conformation with C13 being 0.703 (5) Å out of the mean-plane formed by the remaining ring atoms. The ester group attached to the ring A is in equatorial position. The bond lengths and angles are as expected (Allen et al., 1987). There are intermolecular N—H···O and C—H···O hydrogen bonds. In addition, short intramolecular interactions involving Cl1 and O1 are also present in the structure; details have been provided in Tab. 1 and Fig. 3.

Experimental

A solution of (20S)-20-acetamido-3β-acetoxy-5α-pregnane (Rej et al., 1976) (500 mg) in CHCl3 was treated overnight with excess of tert-butyl hypochlorite, and the solvent and excess reagent were removed under reduced pressure (Rotovap, bath 313 K). The residual N-chloroamide was dissolved in aqueous 1,4-dioxane (1:4 v/v, 50 ml) containing dibenzoyl peroxide (20 mg) and calcium carbonate (2.5 g). The solution was boiled under reflux until a test for the N-chloro compound (moist starch/KI paper) was negative (ca. 2.5 h). The reaction mixture was cooled to room temperature, filtered, and the filter cake washed with CHCl3. The filtrate and washings were evaporated under reduced pressure (Rotovap, bath 323 K) and the residue subjected to preparative thin layer chromatography (Merck silica gel 60 PF254, 2 mm × 20 cm × 1 m), with CHCl3—MeOH (9:1 v/v) as eluent, and iodine for detection of the components. Elution of a band Rf 0.60 afforded (20S)-20-acetamido-3β-acetoxy-18-chloro-5α-pregnane (186 mg, 37%) which crystallized from ethanol-CHCl3 (ca. 7:1 v/v) in the form of colorless plates of average size 0.25 × 0.15 × 0.04 mm, m.p. 504-505 K (Leitz, uncorr.).

Refinement

An absolute structure was established using anomalous scattering effects; 2026 Friedel pairs were measured. Though the H-atoms were observable in the difference electron density maps, they were included at geometrically idealized positions with N—H = 0.88 Å and C—H distances = 0.98, 0.99 and 1.00 Å for methyl, methylene and methine type H-atoms, respectively. The H-atoms were assigned Uiso = 1.2Ueq of the atoms to which they were bonded. The final difference map was free of chemically significant features.

1H-NMR (400 MHz, CDCl3 ref. res. H δH 7.25 ppm) δH 5.30 (1H, br d, J = 9.1 Hz), 4.63 (1H, m) 3.60 (1H, d, J =11.9 Hz), 3.49 (1H, d, J = 11.9 Hz), 1.99 (3H, s), 1.91 (3H, s), 1.23 (3H, d, J = 6.3 Hz) and 0.78 (3H, s); 13C-NMR (100 MHz, CDCl3, ref 77.0 ppm) δC 170.7 s, 168.7 s, 73.5 d, 57.5 d, 57.0 d, 54.0 d, 45.9 s, 44.6 d, 45.5 t, 36.6 t, 35.7 d, 35.4 s, 35.0 s, 33.8 t, 31.7 t, 28.3 t, 27.3 t, 26.2 t, 23.4 q, 23.3 t, 22.2 q, 21.4 q, 20.7 t, 12.2 q; LRCIMS (NH3) m/z 438 (100) and 440 (30) (M+1 35Cl and 37Cl resp.).

Figures

Fig. 1.
The title molecule with the displacement ellipsoids plotted at 50% probability level (Farrugia, 1997).
Fig. 2.
Lettering of the rings A—D of the title molecule.
Fig. 3.
Unit cell packing showing hydrogen bonding interactions by dashed lines; the H-atoms not involved in H-bonds have been excluded for clarity.

Crystal data

C25H40ClNO3F(000) = 476
Mr = 438.03Dx = 1.161 Mg m3
Monoclinic, P21Melting point = 504–505 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 7.6604 (4) ÅCell parameters from 2542 reflections
b = 9.7796 (4) Åθ = 1.0–27.5°
c = 16.8301 (8) ŵ = 0.18 mm1
β = 96.398 (2)°T = 173 K
V = 1252.98 (10) Å3Plate, colorless
Z = 20.28 × 0.12 × 0.04 mm

Data collection

Nonius diffractometer with Bruker APEXII CCD detector5254 independent reflections
Radiation source: fine-focus sealed tube4999 reflections with I > 2σ(I)
graphiteRint = 0.035
[var phi] and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan (SORTAV; Blessing, 1997)h = −9→9
Tmin = 0.952, Tmax = 0.993k = −12→11
9843 measured reflectionsl = −21→21

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.154w = 1/[σ2(Fo2) + (0.0472P)2 + 1.6304P] where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.002
5254 reflectionsΔρmax = 0.74 e Å3
275 parametersΔρmin = −0.25 e Å3
1 restraintAbsolute structure: Flack (1983), 2026 Friedel pairs
144 constraintsFlack parameter: 0.04 (9)
Primary atom site location: structure-invariant direct methods

Special details

Experimental. 1H-NMR (400 MHz, CDCl3 ref. res. H δH 7.25 ppm) δH 5.30 (1H, br d, J = 9.1 Hz), 4.63 (1H, m) 3.60 (1H, d, J =11.9 Hz), 3.49 (1H, d, J = 11.9 Hz), 1.99 (3H, s), 1.91 (3H, s), 1.23 (3H, d, J = 6.3 Hz) and 0.78 (3H, s); 13C-NMR (100 MHz, CDCl3, ref 77.0 ppm) δC 170.7 s, 168.7 s, 73.5 d, 57.5 d, 57.0 d, 54.0 d, 45.9 s, 44.6 d, 45.5 t, 36.6 t, 35.7 d, 35.4 s, 35.0 s, 33.8 t, 31.7 t, 28.3 t, 27.3 t, 26.2 t, 23.4 q, 23.3 t, 22.2 q, 21.4 q, 20.7 t, 12.2 q; LRCIMS (NH3) m/z 438 (100) and 440 (30) (M+1 35Cl and 37Cl resp.).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The following three reflections in the low angle range were deemed to be obstructed by the beam stop and were omitted: 1 1 0, -1 -1 1, 1 0 1

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl11.18745 (9)0.31045 (8)0.26306 (5)0.03388 (19)
O10.9823 (4)0.2298 (2)0.50569 (17)0.0451 (7)
O20.5711 (3)0.1751 (3)−0.28266 (16)0.0413 (6)
O30.3432 (5)0.0304 (4)−0.3034 (2)0.0787 (12)
N10.9983 (4)0.0176 (3)0.45452 (16)0.0289 (6)
H10.9844−0.07030.46290.035*
C10.8523 (4)0.1056 (3)−0.0897 (2)0.0306 (7)
H1A0.97930.1224−0.07490.037*
H1B0.83110.0065−0.08400.037*
C20.8040 (5)0.1465 (4)−0.1774 (2)0.0344 (8)
H2A0.83540.2434−0.18500.041*
H2B0.87080.0897−0.21220.041*
C30.6078 (5)0.1265 (4)−0.2005 (2)0.0352 (8)
H30.57920.0269−0.19850.042*
C40.4980 (4)0.2047 (4)−0.1458 (2)0.0338 (7)
H4A0.37180.1854−0.16100.041*
H4B0.51700.3041−0.15150.041*
C50.5500 (4)0.1618 (3)−0.0587 (2)0.0295 (7)
H50.52910.0610−0.05620.035*
C60.4329 (4)0.2282 (4)−0.0015 (2)0.0355 (8)
H6A0.45160.3284−0.00090.043*
H6B0.30810.2106−0.02080.043*
C70.4737 (4)0.1720 (4)0.0828 (2)0.0315 (7)
H7A0.44230.07380.08300.038*
H7B0.40090.22030.11890.038*
C80.6672 (4)0.1886 (3)0.11419 (19)0.0246 (6)
H80.69440.28830.12000.030*
C90.7875 (4)0.1252 (3)0.0557 (2)0.0260 (6)
H90.75790.02560.05210.031*
C100.7475 (4)0.1843 (3)−0.0313 (2)0.0268 (6)
C110.9805 (4)0.1340 (3)0.0888 (2)0.0255 (6)
H11A1.01560.23130.09390.031*
H11B1.05280.09010.05080.031*
C121.0170 (4)0.0640 (3)0.17103 (19)0.0250 (6)
H12A0.9898−0.03470.16550.030*
H12B1.14310.07340.19080.030*
C130.9056 (4)0.1278 (3)0.23165 (19)0.0233 (6)
C140.7098 (4)0.1199 (3)0.1952 (2)0.0276 (6)
H140.68410.02060.18610.033*
C150.6082 (4)0.1624 (4)0.2641 (2)0.0336 (8)
H15A0.48950.12110.25840.040*
H15B0.59670.26310.26650.040*
C160.7211 (4)0.1070 (4)0.3397 (2)0.0365 (8)
H16A0.74660.18110.37930.044*
H16B0.65770.03300.36460.044*
C170.8935 (4)0.0516 (3)0.3123 (2)0.0281 (7)
H170.8746−0.04740.29940.034*
C180.9533 (4)0.2805 (3)0.2470 (2)0.0271 (7)
H18A0.89940.31230.29450.032*
H18B0.90270.33530.20060.032*
C190.7999 (4)0.3366 (3)−0.0322 (2)0.0318 (7)
H19A0.74750.38520.01030.038*
H19B0.75730.3767−0.08410.038*
H19C0.92810.3447−0.02320.038*
C201.0498 (4)0.0609 (3)0.3773 (2)0.0297 (7)
H201.08770.15870.38210.036*
C211.2082 (5)−0.0250 (4)0.3594 (2)0.0396 (9)
H21A1.25170.00860.31040.047*
H21B1.1726−0.12080.35230.047*
H21C1.3014−0.01750.40410.047*
C220.9714 (5)0.1050 (4)0.5129 (2)0.0334 (7)
C230.9265 (6)0.0419 (5)0.5896 (2)0.0460 (10)
H23A0.8899−0.05320.57980.055*
H23B0.83060.09340.60940.055*
H23C1.03000.04430.62950.055*
C240.4371 (6)0.1165 (5)−0.3278 (3)0.0534 (11)
C250.4187 (7)0.1767 (7)−0.4111 (3)0.0714 (16)
H25A0.41390.1028−0.45060.086*
H25B0.51980.2356−0.41720.086*
H25C0.31050.2308−0.41950.086*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0272 (3)0.0328 (4)0.0424 (4)−0.0044 (3)0.0075 (3)−0.0014 (4)
O10.0725 (19)0.0211 (12)0.0414 (15)0.0050 (12)0.0058 (13)−0.0005 (11)
O20.0416 (14)0.0481 (15)0.0322 (14)−0.0072 (12)−0.0041 (11)0.0025 (12)
O30.078 (2)0.076 (3)0.075 (3)−0.034 (2)−0.025 (2)0.016 (2)
N10.0400 (15)0.0204 (13)0.0274 (15)0.0024 (11)0.0087 (12)0.0028 (11)
C10.0325 (16)0.0300 (17)0.0295 (17)0.0045 (13)0.0041 (13)0.0004 (13)
C20.0395 (18)0.0337 (19)0.0302 (18)0.0012 (14)0.0052 (14)−0.0020 (14)
C30.0412 (18)0.0342 (18)0.0291 (18)−0.0052 (15)−0.0005 (14)0.0009 (14)
C40.0278 (15)0.0346 (18)0.0377 (19)−0.0024 (13)−0.0025 (13)0.0016 (15)
C50.0278 (15)0.0253 (16)0.0349 (18)−0.0028 (12)0.0007 (13)0.0012 (13)
C60.0275 (16)0.040 (2)0.038 (2)0.0012 (14)0.0013 (14)0.0005 (15)
C70.0210 (14)0.0382 (18)0.0357 (18)0.0002 (13)0.0045 (12)0.0027 (15)
C80.0215 (13)0.0237 (15)0.0290 (16)0.0013 (11)0.0042 (11)0.0004 (13)
C90.0260 (14)0.0209 (14)0.0314 (17)0.0007 (11)0.0043 (12)0.0009 (12)
C100.0272 (15)0.0202 (14)0.0335 (17)−0.0005 (12)0.0059 (12)0.0011 (13)
C110.0216 (13)0.0236 (15)0.0325 (17)0.0049 (11)0.0085 (12)0.0000 (12)
C120.0265 (14)0.0217 (14)0.0278 (16)0.0046 (11)0.0081 (12)−0.0012 (12)
C130.0217 (13)0.0215 (14)0.0278 (16)0.0025 (11)0.0083 (11)−0.0014 (12)
C140.0279 (15)0.0248 (15)0.0303 (17)−0.0015 (12)0.0049 (12)−0.0007 (13)
C150.0240 (15)0.040 (2)0.038 (2)0.0010 (13)0.0108 (13)0.0056 (16)
C160.0274 (16)0.048 (2)0.0365 (19)0.0020 (14)0.0144 (14)0.0036 (16)
C170.0293 (15)0.0286 (16)0.0278 (16)−0.0011 (12)0.0091 (12)0.0021 (13)
C180.0215 (13)0.0248 (17)0.0355 (17)−0.0004 (11)0.0059 (12)−0.0022 (12)
C190.0335 (15)0.0235 (17)0.0384 (19)−0.0033 (12)0.0034 (13)0.0011 (13)
C200.0329 (16)0.0265 (16)0.0310 (18)−0.0011 (13)0.0097 (13)0.0036 (13)
C210.0321 (17)0.052 (2)0.036 (2)0.0106 (16)0.0084 (15)0.0066 (17)
C220.0409 (19)0.0315 (18)0.0278 (18)0.0038 (14)0.0036 (14)0.0037 (14)
C230.062 (3)0.046 (2)0.032 (2)0.006 (2)0.0153 (18)0.0034 (17)
C240.053 (2)0.061 (3)0.042 (2)−0.008 (2)−0.0127 (19)−0.005 (2)
C250.067 (3)0.099 (4)0.043 (3)−0.011 (3)−0.016 (2)0.009 (3)

Geometric parameters (Å, °)

Cl1—C181.808 (3)C11—H11A0.9900
O1—C221.230 (4)C11—H11B0.9900
O2—C241.336 (5)C12—C131.534 (4)
O2—C31.459 (4)C12—H12A0.9900
O3—C241.208 (6)C12—H12B0.9900
N1—C221.335 (5)C13—C181.552 (4)
N1—C201.462 (4)C13—C141.558 (4)
N1—H10.8800C13—C171.560 (4)
C1—C21.534 (5)C14—C151.525 (5)
C1—C101.542 (4)C14—H141.0000
C1—H1A0.9900C15—C161.554 (5)
C1—H1B0.9900C15—H15A0.9900
C2—C31.522 (5)C15—H15B0.9900
C2—H2A0.9900C16—C171.544 (4)
C2—H2B0.9900C16—H16A0.9900
C3—C41.522 (5)C16—H16B0.9900
C3—H31.0000C17—C201.532 (5)
C4—C51.533 (5)C17—H171.0000
C4—H4A0.9900C18—H18A0.9900
C4—H4B0.9900C18—H18B0.9900
C5—C61.531 (5)C19—H19A0.9800
C5—C101.547 (4)C19—H19B0.9800
C5—H51.0000C19—H19C0.9800
C6—C71.521 (5)C20—C211.533 (5)
C6—H6A0.9900C20—H201.0000
C6—H6B0.9900C21—H21A0.9800
C7—C81.526 (4)C21—H21B0.9800
C7—H7A0.9900C21—H21C0.9800
C7—H7B0.9900C22—C231.505 (5)
C8—C141.521 (4)C23—H23A0.9800
C8—C91.550 (4)C23—H23B0.9800
C8—H81.0000C23—H23C0.9800
C9—C111.524 (4)C24—C251.513 (7)
C9—C101.573 (5)C25—H25A0.9800
C9—H91.0000C25—H25B0.9800
C10—C191.543 (4)C25—H25C0.9800
C11—C121.541 (4)
C24—O2—C3117.0 (3)C11—C12—H12B109.4
C22—N1—C20123.2 (3)H12A—C12—H12B108.0
C22—N1—H1118.4C12—C13—C18111.4 (2)
C20—N1—H1118.4C12—C13—C14107.5 (3)
C2—C1—C10113.3 (3)C18—C13—C14108.2 (2)
C2—C1—H1A108.9C12—C13—C17118.4 (3)
C10—C1—H1A108.9C18—C13—C17110.5 (3)
C2—C1—H1B108.9C14—C13—C1799.9 (2)
C10—C1—H1B108.9C8—C14—C15119.0 (3)
H1A—C1—H1B107.7C8—C14—C13115.6 (3)
C3—C2—C1109.8 (3)C15—C14—C13103.7 (3)
C3—C2—H2A109.7C8—C14—H14105.8
C1—C2—H2A109.7C15—C14—H14105.8
C3—C2—H2B109.7C13—C14—H14105.8
C1—C2—H2B109.7C14—C15—C16104.1 (3)
H2A—C2—H2B108.2C14—C15—H15A110.9
O2—C3—C4110.4 (3)C16—C15—H15A110.9
O2—C3—C2106.3 (3)C14—C15—H15B110.9
C4—C3—C2112.2 (3)C16—C15—H15B110.9
O2—C3—H3109.3H15A—C15—H15B109.0
C4—C3—H3109.3C17—C16—C15107.1 (3)
C2—C3—H3109.3C17—C16—H16A110.3
C3—C4—C5109.8 (3)C15—C16—H16A110.3
C3—C4—H4A109.7C17—C16—H16B110.3
C5—C4—H4A109.7C15—C16—H16B110.3
C3—C4—H4B109.7H16A—C16—H16B108.5
C5—C4—H4B109.7C20—C17—C16113.1 (3)
H4A—C4—H4B108.2C20—C17—C13118.4 (3)
C6—C5—C4112.1 (3)C16—C17—C13103.2 (3)
C6—C5—C10112.0 (3)C20—C17—H17107.2
C4—C5—C10112.8 (3)C16—C17—H17107.2
C6—C5—H5106.5C13—C17—H17107.2
C4—C5—H5106.5C13—C18—Cl1113.1 (2)
C10—C5—H5106.5C13—C18—H18A109.0
C7—C6—C5111.0 (3)Cl1—C18—H18A109.0
C7—C6—H6A109.4C13—C18—H18B109.0
C5—C6—H6A109.4Cl1—C18—H18B109.0
C7—C6—H6B109.4H18A—C18—H18B107.8
C5—C6—H6B109.4C10—C19—H19A109.5
H6A—C6—H6B108.0C10—C19—H19B109.5
C6—C7—C8112.1 (3)H19A—C19—H19B109.5
C6—C7—H7A109.2C10—C19—H19C109.5
C8—C7—H7A109.2H19A—C19—H19C109.5
C6—C7—H7B109.2H19B—C19—H19C109.5
C8—C7—H7B109.2N1—C20—C17110.5 (3)
H7A—C7—H7B107.9N1—C20—C21108.3 (3)
C14—C8—C7111.5 (3)C17—C20—C21113.5 (3)
C14—C8—C9108.0 (2)N1—C20—H20108.1
C7—C8—C9111.1 (3)C17—C20—H20108.1
C14—C8—H8108.7C21—C20—H20108.1
C7—C8—H8108.7C20—C21—H21A109.5
C9—C8—H8108.7C20—C21—H21B109.5
C11—C9—C8111.5 (3)H21A—C21—H21B109.5
C11—C9—C10113.6 (3)C20—C21—H21C109.5
C8—C9—C10112.1 (2)H21A—C21—H21C109.5
C11—C9—H9106.4H21B—C21—H21C109.5
C8—C9—H9106.4O1—C22—N1123.0 (3)
C10—C9—H9106.4O1—C22—C23121.0 (3)
C1—C10—C19108.7 (3)N1—C22—C23115.9 (3)
C1—C10—C5107.5 (3)C22—C23—H23A109.5
C19—C10—C5112.4 (3)C22—C23—H23B109.5
C1—C10—C9110.4 (3)H23A—C23—H23B109.5
C19—C10—C9109.9 (3)C22—C23—H23C109.5
C5—C10—C9107.9 (2)H23A—C23—H23C109.5
C9—C11—C12112.0 (2)H23B—C23—H23C109.5
C9—C11—H11A109.2O3—C24—O2123.7 (4)
C12—C11—H11A109.2O3—C24—C25126.1 (4)
C9—C11—H11B109.2O2—C24—C25110.2 (4)
C12—C11—H11B109.2C24—C25—H25A109.5
H11A—C11—H11B107.9C24—C25—H25B109.5
C13—C12—C11110.9 (2)H25A—C25—H25B109.5
C13—C12—H12A109.4C24—C25—H25C109.5
C11—C12—H12A109.4H25A—C25—H25C109.5
C13—C12—H12B109.4H25B—C25—H25C109.5
C10—C1—C2—C3−56.6 (4)C11—C12—C13—C1455.1 (3)
C24—O2—C3—C4−87.3 (4)C11—C12—C13—C17167.1 (3)
C24—O2—C3—C2150.8 (4)C7—C8—C14—C15−57.0 (4)
C1—C2—C3—O2176.6 (3)C9—C8—C14—C15−179.4 (3)
C1—C2—C3—C455.9 (4)C7—C8—C14—C13178.5 (3)
O2—C3—C4—C5−174.9 (3)C9—C8—C14—C1356.2 (3)
C2—C3—C4—C5−56.5 (4)C12—C13—C14—C8−57.2 (3)
C3—C4—C5—C6−175.1 (3)C18—C13—C14—C863.2 (3)
C3—C4—C5—C1057.4 (4)C17—C13—C14—C8178.7 (3)
C4—C5—C6—C7173.7 (3)C12—C13—C14—C15170.8 (3)
C10—C5—C6—C7−58.5 (4)C18—C13—C14—C15−68.9 (3)
C5—C6—C7—C855.8 (4)C17—C13—C14—C1546.6 (3)
C6—C7—C8—C14−174.6 (3)C8—C14—C15—C16−163.5 (3)
C6—C7—C8—C9−54.0 (4)C13—C14—C15—C16−33.4 (3)
C14—C8—C9—C11−54.2 (3)C14—C15—C16—C177.1 (4)
C7—C8—C9—C11−176.8 (3)C15—C16—C17—C20150.9 (3)
C14—C8—C9—C10177.2 (2)C15—C16—C17—C1321.7 (4)
C7—C8—C9—C1054.6 (3)C12—C13—C17—C2076.9 (4)
C2—C1—C10—C19−66.1 (4)C18—C13—C17—C20−53.2 (4)
C2—C1—C10—C555.9 (4)C14—C13—C17—C20−167.0 (3)
C2—C1—C10—C9173.3 (3)C12—C13—C17—C16−157.3 (3)
C6—C5—C10—C1176.3 (3)C18—C13—C17—C1672.6 (3)
C4—C5—C10—C1−56.1 (3)C14—C13—C17—C16−41.2 (3)
C6—C5—C10—C19−64.0 (4)C12—C13—C18—Cl1−46.1 (3)
C4—C5—C10—C1963.5 (4)C14—C13—C18—Cl1−164.0 (2)
C6—C5—C10—C957.3 (3)C17—C13—C18—Cl187.6 (3)
C4—C5—C10—C9−175.2 (3)C22—N1—C20—C17−104.7 (4)
C11—C9—C10—C159.9 (3)C22—N1—C20—C21130.3 (3)
C8—C9—C10—C1−172.7 (3)C16—C17—C20—N143.4 (4)
C11—C9—C10—C19−60.1 (3)C13—C17—C20—N1164.2 (3)
C8—C9—C10—C1967.4 (3)C16—C17—C20—C21165.3 (3)
C11—C9—C10—C5177.0 (3)C13—C17—C20—C21−73.9 (4)
C8—C9—C10—C5−55.5 (3)C20—N1—C22—O12.3 (6)
C8—C9—C11—C1257.1 (3)C20—N1—C22—C23−177.5 (3)
C10—C9—C11—C12−175.1 (2)C3—O2—C24—O32.7 (7)
C9—C11—C12—C13−58.1 (3)C3—O2—C24—C25−179.1 (4)
C11—C12—C13—C18−63.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.032.893 (4)165
C23—H23C···O3ii0.982.543.487 (6)163
C12—H12B···Cl10.992.623.076 (3)108
C20—H20···Cl11.002.673.349 (3)125
C20—H20···O11.002.422.812 (4)103

Symmetry codes: (i) −x+2, y−1/2, −z+1; (ii) x+1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2184).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Benn, M. H. & Vohra, K. N. (1976). Can. J. Chem.54, 136–140.
  • Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Edwards, O. E., Paton, J. M., Benn, M. H., Mitchell, R. E., Watanatada, C. & Vohra, K. N. (1971). Can. J. Chem.49, 1648–1658.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Pellissier, H. & Santelli, M. (2001). Org. Prep. Proc. Intl, 33, 455–476.
  • Rej, N. R., Ghosh, P. C. & Banerji, J. (1976). Phytochemistry, 15, 1173–1175.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vohra, K. N. (1973). N-Haloamides and their Applications in Natural Product Synthesis PhD thesis, University of Calgary, Calgary, Alberta, Canada.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography