PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m358.
Published online 2010 March 3. doi:  10.1107/S1600536810007245
PMCID: PMC2983832

catena-Poly[[[bis­(μ-4-hydroxy­benzoato)bis­[(4-hydroxy­benzoato)manganese(II)]]-di-μ-4,4′-bipyridine] 4,4′-bipyridine disolvate tetra­hydrate]

Abstract

In the polymeric title complex, {[Mn(O2CC6H4-p-OH)2(C10H8N2)]·C10H8N2·2H2O}n, the MnII atom is coordinated in a distorted octa­hedral geometry defined by four O atoms from three different carboxyl­ate ligands and two trans-N atoms from two 4,4′-bipyridine ligands. In the crystal structure, an extensive range of O—H(...)O and O—H(...)N hydrogen bonds link the complex and all non-coordinated mol­ecules into a three-dimensional network.

Related literature

For background to the use of aromatic carboxyl­ates and 4,4′-bipyridine in the design of supra­molecular structures containing metal-organic mol­ecules, see: Leonard et al. (1998 [triangle]); Lucia et al. (1997 [triangle]); Corey et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m358-scheme1.jpg

Experimental

Crystal data

  • [Mn(C7H5O3)2(C10H8N2)]·C10H8N2·2H2O
  • M r = 677.56
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m358-efi1.jpg
  • a = 18.1031 (17) Å
  • b = 11.6448 (11) Å
  • c = 31.771 (3) Å
  • β = 104.957 (1)°
  • V = 6470.6 (11) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.47 mm−1
  • T = 293 K
  • 0.20 × 0.13 × 0.10 mm

Data collection

  • Bruker APEXII 1K CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.931, T max = 0.955
  • 20618 measured reflections
  • 7526 independent reflections
  • 4072 reflections with I > 2σ(I)
  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.130
  • S = 1.01
  • 7526 reflections
  • 428 parameters
  • 7 restraints
  • H-atom parameters constrained
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810007245/tk2614sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007245/tk2614Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Much progress has been achieved in the design of supramolecular structures containing metal-organic molecules during recent years. Multifunctional ligands can link metal ions into one-, two- or three-dimensional structures, and in this context, aromatic carboxylates and 4,4'-bipyridine have been used successfully to synthesize such materials (Leonard et al., 1998; Lucia et al., 1997; Corey et al., 2001).

As shown in Fig. 1, the MnII coordination environment can be considered as a distorted octahedral geometry, being coordinated by four O atoms in the equatorial plane (O1, O2, O5, O4ii; ii = -x, y, -z+3/2), derived from three different carboxylate groups, and two trans-N atoms (N1, N2i; i = x, y+1, z). The Mn—O chelating bond distances (2.271 (2) Å and 2.281 (2) Å) are longer than Mn—O bridging bonds (2.087 (2) Å and 2.1102 (19) Å). Pairs of Mn ions are linked via two carboxyl groups to generate an eight-membered Mn2(COO)2 ring with a Mn···Mn distance of 4.173 (2) Å. These Mn2(COO)2 units are further connected by two 4,4'-bipyridine ligands to form a double-chain structure (Fig. 2) with a Mn—Mn distance 8.355 (4) Å. There are six kinds of H-bonds occurring between the chains, the solvent water and 4,4'-bipyridine molecules, which join the components of the structure into a 3-D network.

Experimental

Mn(O2CCH3)2 (27.67 mg, 0.1 mmol) was dissolved in H2O (5 ml), and 4-hydroxybenzoic acid (27.67 mg, 0.2 mmol) was dissolved in methanol (5 ml) at room temperature. The mixture was stirred for 1 h, a methanol solution (5 ml) of 4,4'-bipyridine (31.28 mg, 0.2 mmol) was added, and stirring continued for 30 mins. Yellow single crystals of the title complex were obtained by slow evaporation at room temperature for two weeks.

Refinement

H atoms bonded to O1W and O2W atoms were located in a difference map and fixed at those positions (see Table 1 for bond distances) but their Uiso values were refined. The remaining H atoms were calculated geometrically and were allowed to ride on the parent atoms with distance restraints of O—H = 0.82 Å and C—H = 0.93 Å, and with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(C).

Figures

Fig. 1.
The immediate environment for the Mn atom in the title complex with the atom-numbering shown for the asymmetric unit. Non-coordinated molecules and hydrogen atoms are omitted for clarity. Displacement ellipsoids were drawn at the 30% probability level. ...
Fig. 2.
The 1D double chain in the title complex. Non-coordinated molecules and hydrogen atoms are omitted for clarity.

Crystal data

[Mn(C7H5O3)2(C10H8N2)]·C10H8N2·2H2OF(000) = 2808
Mr = 677.56Dx = 1.391 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2470 reflections
a = 18.1031 (17) Åθ = 2.3–20.7°
b = 11.6448 (11) ŵ = 0.47 mm1
c = 31.771 (3) ÅT = 293 K
β = 104.957 (1)°Irregular, yellow
V = 6470.6 (11) Å30.20 × 0.13 × 0.10 mm
Z = 8

Data collection

Bruker APEXII 1K CCD area-detector diffractometer7526 independent reflections
Radiation source: fine-focus sealed tube4072 reflections with I > 2σ(I)
graphiteRint = 0.055
[var phi] and ω scansθmax = 28.2°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −23→17
Tmin = 0.931, Tmax = 0.955k = −15→14
20618 measured reflectionsl = −27→41

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0516P)2] where P = (Fo2 + 2Fc2)/3
7526 reflections(Δ/σ)max = 0.002
428 parametersΔρmax = 0.48 e Å3
7 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.08008 (2)0.15824 (3)0.713098 (13)0.03256 (13)
O10.19470 (11)0.15352 (16)0.69639 (6)0.0465 (5)
O1W0.06897 (16)−0.1109 (3)0.51429 (10)0.1000 (9)
H1WA0.0579−0.04150.52630.30 (4)*
H1WB0.0341−0.11200.48560.16 (2)*
O20.09014 (11)0.15001 (16)0.64305 (6)0.0458 (5)
O2W0.01136 (14)0.0156 (3)0.57296 (8)0.0980 (10)
H2WB−0.0031−0.04860.58380.23 (4)*
H2WA0.04310.05740.59810.144 (19)*
O30.33963 (13)0.1358 (2)0.53460 (7)0.0775 (8)
H3B0.38340.11400.54590.116*
O40.03921 (11)0.15809 (17)0.80555 (7)0.0573 (6)
O50.14062 (11)0.16769 (16)0.77935 (6)0.0483 (5)
O60.27872 (16)0.3557 (2)0.97038 (8)0.0966 (9)
H6B0.32410.36230.97090.145*
N10.08390 (12)−0.03575 (18)0.71607 (8)0.0399 (6)
N20.08120 (13)−0.64423 (17)0.71374 (8)0.0412 (6)
N3−0.51598 (16)0.0563 (3)0.56051 (11)0.0741 (9)
N4−0.12265 (15)−0.0748 (3)0.59787 (10)0.0636 (8)
C10.16240 (16)0.1471 (2)0.65617 (9)0.0384 (7)
C20.20923 (16)0.1390 (2)0.62421 (9)0.0386 (7)
C30.28472 (17)0.1051 (3)0.63700 (10)0.0484 (8)
H3A0.30610.08420.66580.058*
C40.32916 (18)0.1016 (3)0.60746 (10)0.0544 (9)
H4A0.37970.07710.61630.065*
C50.29825 (18)0.1346 (3)0.56487 (11)0.0541 (9)
C60.22282 (18)0.1687 (3)0.55139 (10)0.0564 (9)
H6A0.20200.19120.52270.068*
C70.17852 (17)0.1690 (3)0.58084 (10)0.0492 (8)
H7A0.12730.18970.57150.059*
C80.10840 (16)0.1807 (2)0.80963 (9)0.0352 (7)
C90.15477 (15)0.2283 (2)0.85155 (9)0.0359 (7)
C100.22868 (17)0.2643 (2)0.85611 (10)0.0499 (8)
H10A0.25020.25890.83260.060*
C110.27225 (18)0.3093 (3)0.89598 (11)0.0586 (9)
H11A0.32200.33470.89900.070*
C120.2391 (2)0.3146 (3)0.93039 (11)0.0598 (9)
C130.1661 (2)0.2796 (3)0.92614 (11)0.0689 (10)
H13A0.14460.28460.94970.083*
C140.12380 (18)0.2368 (3)0.88709 (10)0.0516 (8)
H14A0.07370.21310.88440.062*
C150.03712 (17)−0.0965 (2)0.68436 (10)0.0548 (9)
H15A0.0024−0.05710.66240.066*
C160.03788 (18)−0.2137 (2)0.68267 (11)0.0567 (9)
H16A0.0044−0.25180.65980.068*
C170.08816 (15)−0.2762 (2)0.71470 (9)0.0383 (7)
C180.13833 (16)−0.2140 (2)0.74664 (10)0.0459 (8)
H18A0.1746−0.25140.76840.055*
C190.13412 (16)−0.0958 (2)0.74605 (10)0.0447 (8)
H19A0.1684−0.05560.76790.054*
C200.01869 (16)−0.5805 (2)0.69826 (10)0.0468 (8)
H20A−0.0275−0.61810.68680.056*
C210.01906 (16)−0.4630 (2)0.69834 (10)0.0470 (8)
H21A−0.0263−0.42300.68750.056*
C220.08681 (15)−0.4033 (2)0.71451 (9)0.0379 (7)
C230.15139 (16)−0.4697 (2)0.73069 (10)0.0507 (9)
H23A0.1984−0.43460.74220.061*
C240.14585 (16)−0.5868 (2)0.72969 (11)0.0514 (9)
H24A0.1902−0.62900.74090.062*
C25−0.4703 (2)0.1155 (3)0.54225 (14)0.0797 (12)
H25A−0.49100.17660.52410.096*
C26−0.3937 (2)0.0916 (3)0.54861 (12)0.0715 (11)
H26A−0.36430.13490.53440.086*
C27−0.36040 (18)0.0029 (3)0.57622 (10)0.0514 (8)
C28−0.40861 (19)−0.0576 (3)0.59569 (11)0.0595 (9)
H28A−0.3896−0.11750.61480.071*
C29−0.4846 (2)−0.0285 (3)0.58664 (12)0.0719 (11)
H29A−0.5160−0.07130.59970.086*
C30−0.1652 (2)−0.0374 (3)0.56010 (12)0.0735 (11)
H30A−0.1418−0.02790.53750.088*
C31−0.24157 (19)−0.0116 (3)0.55193 (11)0.0686 (10)
H31A−0.26820.01450.52460.082*
C32−0.27841 (17)−0.0247 (3)0.58427 (10)0.0498 (8)
C33−0.23480 (19)−0.0645 (3)0.62397 (11)0.0592 (9)
H33A−0.2567−0.07560.64710.071*
C34−0.1590 (2)−0.0875 (3)0.62865 (12)0.0662 (10)
H34A−0.1308−0.11410.65560.079*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0373 (2)0.0223 (2)0.0358 (2)−0.00006 (18)0.00524 (18)−0.00108 (19)
O10.0462 (12)0.0540 (12)0.0382 (12)−0.0019 (10)0.0087 (10)−0.0069 (10)
O1W0.103 (2)0.106 (2)0.084 (2)0.0188 (18)0.0113 (19)0.0147 (18)
O20.0410 (12)0.0535 (13)0.0409 (12)0.0010 (10)0.0071 (9)−0.0006 (10)
O2W0.0773 (19)0.156 (3)0.0601 (17)−0.0445 (19)0.0172 (15)−0.0286 (19)
O30.0578 (15)0.127 (2)0.0515 (15)0.0158 (14)0.0203 (13)0.0114 (15)
O40.0376 (12)0.0491 (12)0.0768 (16)−0.0018 (10)−0.0003 (11)−0.0030 (12)
O50.0580 (13)0.0488 (12)0.0350 (11)0.0001 (10)0.0061 (10)−0.0049 (10)
O60.118 (2)0.110 (2)0.0490 (16)−0.0248 (17)−0.0017 (15)−0.0248 (15)
N10.0428 (14)0.0241 (12)0.0461 (15)−0.0004 (10)−0.0005 (11)0.0037 (11)
N20.0447 (14)0.0238 (12)0.0501 (15)0.0004 (11)0.0035 (12)−0.0037 (11)
N30.0562 (19)0.092 (3)0.078 (2)0.0014 (18)0.0234 (17)0.0091 (19)
N40.0528 (18)0.077 (2)0.059 (2)−0.0074 (15)0.0102 (16)−0.0033 (16)
C10.0439 (17)0.0311 (15)0.0382 (17)−0.0037 (13)0.0070 (14)−0.0007 (13)
C20.0453 (17)0.0333 (16)0.0376 (17)−0.0026 (13)0.0114 (14)−0.0021 (13)
C30.0444 (19)0.0562 (19)0.0400 (18)0.0027 (15)0.0026 (15)−0.0011 (15)
C40.0407 (18)0.079 (2)0.043 (2)0.0091 (17)0.0094 (16)−0.0028 (18)
C50.048 (2)0.072 (2)0.044 (2)0.0008 (17)0.0159 (17)−0.0006 (17)
C60.056 (2)0.079 (2)0.0327 (17)0.0038 (18)0.0096 (16)0.0069 (17)
C70.0437 (18)0.058 (2)0.0441 (19)0.0032 (15)0.0083 (15)0.0035 (16)
C80.0382 (17)0.0218 (14)0.0408 (17)0.0020 (11)0.0015 (14)0.0005 (12)
C90.0401 (16)0.0296 (14)0.0352 (16)0.0013 (12)0.0048 (13)−0.0010 (12)
C100.0495 (19)0.0499 (19)0.046 (2)−0.0045 (15)0.0047 (15)−0.0024 (15)
C110.052 (2)0.057 (2)0.059 (2)−0.0117 (16)−0.0003 (18)−0.0025 (18)
C120.074 (3)0.056 (2)0.042 (2)−0.0070 (18)0.0011 (19)−0.0054 (16)
C130.088 (3)0.071 (3)0.050 (2)−0.006 (2)0.023 (2)−0.0096 (19)
C140.057 (2)0.051 (2)0.047 (2)−0.0006 (16)0.0128 (17)−0.0031 (16)
C150.060 (2)0.0326 (17)0.053 (2)−0.0013 (15)−0.0178 (16)0.0013 (15)
C160.069 (2)0.0290 (16)0.054 (2)−0.0061 (15)−0.0185 (17)−0.0020 (15)
C170.0401 (16)0.0253 (14)0.0455 (18)0.0015 (12)0.0035 (14)−0.0010 (13)
C180.0521 (18)0.0268 (15)0.0468 (19)0.0032 (13)−0.0089 (14)0.0022 (14)
C190.0488 (18)0.0296 (16)0.0451 (18)−0.0027 (13)−0.0074 (14)−0.0022 (14)
C200.0460 (18)0.0293 (15)0.057 (2)−0.0057 (14)−0.0017 (15)−0.0003 (14)
C210.0410 (17)0.0270 (15)0.061 (2)0.0027 (13)−0.0077 (15)0.0016 (14)
C220.0450 (17)0.0209 (14)0.0428 (17)0.0008 (12)0.0022 (14)0.0000 (13)
C230.0393 (17)0.0292 (15)0.074 (2)−0.0012 (13)−0.0033 (16)−0.0015 (15)
C240.0398 (18)0.0285 (15)0.077 (2)0.0049 (13)−0.0008 (16)−0.0007 (16)
C250.057 (3)0.084 (3)0.092 (3)0.005 (2)0.009 (2)0.024 (2)
C260.057 (2)0.081 (3)0.074 (3)−0.012 (2)0.013 (2)0.022 (2)
C270.055 (2)0.052 (2)0.0469 (19)−0.0095 (16)0.0112 (16)0.0000 (16)
C280.060 (2)0.063 (2)0.062 (2)0.0013 (18)0.0262 (19)0.0100 (18)
C290.071 (3)0.077 (3)0.077 (3)−0.004 (2)0.035 (2)0.006 (2)
C300.053 (2)0.115 (3)0.054 (2)−0.016 (2)0.0187 (19)−0.009 (2)
C310.048 (2)0.103 (3)0.050 (2)−0.018 (2)0.0041 (18)0.006 (2)
C320.0447 (19)0.0517 (19)0.051 (2)−0.0126 (15)0.0084 (17)−0.0018 (16)
C330.062 (2)0.065 (2)0.050 (2)−0.0018 (18)0.0137 (18)0.0075 (17)
C340.063 (2)0.077 (3)0.052 (2)0.002 (2)0.0014 (19)0.0085 (19)

Geometric parameters (Å, °)

Mn1—O4i2.087 (2)C10—C111.409 (4)
Mn1—O52.1102 (19)C10—H10A0.9300
Mn1—N12.261 (2)C11—C121.377 (5)
Mn1—O12.271 (2)C11—H11A0.9300
Mn1—O22.281 (2)C12—C131.357 (4)
Mn1—N2ii2.300 (2)C13—C141.372 (4)
Mn1—C12.627 (3)C13—H13A0.9300
O1—C11.263 (3)C14—H14A0.9300
O1W—H1WA0.9383C15—C161.366 (4)
O1W—H1WB0.9656C15—H15A0.9300
O2—C11.267 (3)C16—C171.384 (4)
O2W—H2WB0.8897C16—H16A0.9300
O2W—H2WA0.9833C17—C181.380 (4)
O3—C51.363 (4)C17—C221.480 (3)
O3—H3B0.8200C18—C191.378 (4)
O4—C81.253 (3)C18—H18A0.9300
O4—Mn1i2.087 (2)C19—H19A0.9300
O5—C81.256 (3)C20—C211.368 (4)
O6—C121.373 (4)C20—H20A0.9300
O6—H6B0.8200C21—C221.388 (4)
N1—C191.333 (3)C21—H21A0.9300
N1—C151.339 (3)C22—C231.385 (4)
N2—C241.330 (3)C23—C241.367 (4)
N2—C201.336 (3)C23—H23A0.9300
N2—Mn1iii2.300 (2)C24—H24A0.9300
N3—C251.320 (4)C25—C261.378 (4)
N3—C291.321 (4)C25—H25A0.9300
N4—C341.320 (4)C26—C271.388 (4)
N4—C301.321 (4)C26—H26A0.9300
C1—C21.484 (4)C27—C281.385 (4)
C2—C31.379 (4)C27—C321.475 (4)
C2—C71.391 (4)C28—C291.373 (4)
C3—C41.385 (4)C28—H28A0.9300
C3—H3A0.9300C29—H29A0.9300
C4—C51.379 (4)C30—C311.372 (4)
C4—H4A0.9300C30—H30A0.9300
C5—C61.380 (4)C31—C321.370 (4)
C6—C71.381 (4)C31—H31A0.9300
C6—H6A0.9300C32—C331.384 (4)
C7—H7A0.9300C33—C341.369 (4)
C8—C91.486 (4)C33—H33A0.9300
C9—C101.374 (4)C34—H34A0.9300
C9—C141.388 (4)
O4i—Mn1—O5121.08 (9)C12—C11—H11A120.9
O4i—Mn1—N191.68 (8)C10—C11—H11A120.9
O5—Mn1—N190.46 (8)C13—C12—O6117.3 (3)
O4i—Mn1—O1150.99 (8)C13—C12—C11121.3 (3)
O5—Mn1—O187.92 (8)O6—C12—C11121.3 (3)
N1—Mn1—O188.03 (8)C12—C13—C14120.0 (3)
O4i—Mn1—O293.46 (8)C12—C13—H13A120.0
O5—Mn1—O2145.44 (8)C14—C13—H13A120.0
N1—Mn1—O289.40 (8)C13—C14—C9120.9 (3)
O1—Mn1—O257.53 (7)C13—C14—H14A119.5
O4i—Mn1—N2ii90.54 (8)C9—C14—H14A119.5
O5—Mn1—N2ii86.44 (8)N1—C15—C16123.2 (3)
N1—Mn1—N2ii176.82 (8)N1—C15—H15A118.4
O1—Mn1—N2ii91.13 (8)C16—C15—H15A118.4
O2—Mn1—N2ii92.75 (8)C15—C16—C17120.5 (3)
O4i—Mn1—C1122.28 (9)C15—C16—H16A119.7
O5—Mn1—C1116.65 (9)C17—C16—H16A119.7
N1—Mn1—C187.86 (8)C18—C17—C16116.6 (2)
O1—Mn1—C128.72 (7)C18—C17—C22122.4 (2)
O2—Mn1—C128.83 (7)C16—C17—C22121.1 (2)
N2ii—Mn1—C192.88 (8)C19—C18—C17119.4 (3)
C1—O1—Mn191.46 (17)C19—C18—H18A120.3
H1WA—O1W—H1WB103.8C17—C18—H18A120.3
C1—O2—Mn190.90 (17)N1—C19—C18124.0 (3)
H2WB—O2W—H2WA105.7N1—C19—H19A118.0
C5—O3—H3B109.5C18—C19—H19A118.0
C8—O4—Mn1i164.27 (19)N2—C20—C21123.4 (3)
C8—O5—Mn1123.08 (19)N2—C20—H20A118.3
C12—O6—H6B109.5C21—C20—H20A118.3
C19—N1—C15116.3 (2)C20—C21—C22120.4 (3)
C19—N1—Mn1124.21 (18)C20—C21—H21A119.8
C15—N1—Mn1119.35 (18)C22—C21—H21A119.8
C24—N2—C20116.1 (2)C23—C22—C21116.0 (2)
C24—N2—Mn1iii120.75 (18)C23—C22—C17123.0 (2)
C20—N2—Mn1iii123.16 (18)C21—C22—C17121.0 (2)
C25—N3—C29116.8 (3)C24—C23—C22119.9 (3)
C34—N4—C30115.1 (3)C24—C23—H23A120.1
O1—C1—O2120.0 (3)C22—C23—H23A120.1
O1—C1—C2119.9 (3)N2—C24—C23124.2 (3)
O2—C1—C2120.0 (3)N2—C24—H24A117.9
O1—C1—Mn159.82 (15)C23—C24—H24A117.9
O2—C1—Mn160.27 (15)N3—C25—C26123.4 (4)
C2—C1—Mn1179.2 (2)N3—C25—H25A118.3
C3—C2—C7118.4 (3)C26—C25—H25A118.3
C3—C2—C1120.9 (3)C25—C26—C27120.0 (3)
C7—C2—C1120.6 (3)C25—C26—H26A120.0
C2—C3—C4120.9 (3)C27—C26—H26A120.0
C2—C3—H3A119.6C28—C27—C26116.1 (3)
C4—C3—H3A119.6C28—C27—C32122.3 (3)
C5—C4—C3119.8 (3)C26—C27—C32121.7 (3)
C5—C4—H4A120.1C29—C28—C27119.6 (3)
C3—C4—H4A120.1C29—C28—H28A120.2
O3—C5—C4122.5 (3)C27—C28—H28A120.2
O3—C5—C6117.3 (3)N3—C29—C28124.1 (4)
C4—C5—C6120.2 (3)N3—C29—H29A117.9
C5—C6—C7119.5 (3)C28—C29—H29A117.9
C5—C6—H6A120.3N4—C30—C31124.5 (4)
C7—C6—H6A120.3N4—C30—H30A117.7
C6—C7—C2121.1 (3)C31—C30—H30A117.7
C6—C7—H7A119.4C32—C31—C30119.7 (3)
C2—C7—H7A119.4C32—C31—H31A120.1
O4—C8—O5123.0 (3)C30—C31—H31A120.1
O4—C8—C9119.3 (3)C31—C32—C33116.5 (3)
O5—C8—C9117.7 (3)C31—C32—C27120.6 (3)
C10—C9—C14118.6 (3)C33—C32—C27122.9 (3)
C10—C9—C8121.2 (3)C34—C33—C32119.0 (3)
C14—C9—C8120.2 (3)C34—C33—H33A120.5
C9—C10—C11120.8 (3)C32—C33—H33A120.5
C9—C10—H10A119.6N4—C34—C33125.1 (3)
C11—C10—H10A119.6N4—C34—H34A117.4
C12—C11—C10118.2 (3)C33—C34—H34A117.4

Symmetry codes: (i) −x, y, −z+3/2; (ii) x, y+1, z; (iii) x, y−1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2W0.942.002.781 (4)140
O1W—H1WB···O2Wiv0.972.152.992 (4)145
O2W—H2WB···N40.892.342.934 (4)124
O2W—H2WA···O20.981.822.793 (3)172
O3—H3B···N3v0.821.882.694 (4)169
O6—H6B···O1Wvi0.821.902.701 (4)167

Symmetry codes: (iv) −x, −y, −z+1; (v) x+1, y, z; (vi) −x+1/2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2614).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Corey, S., Hu, N.-X. & Wan, S.-N. (2001). J. Chem. Soc. Dalton Trans. pp. 134–137.
  • Leonard, R., Millivray, R., Groe, M. & Jerry, L. A. (1998). J. Am. Chem. Soc.212, 2676–2677.
  • Lucia, C., Gianfranco, C., Davide, M. & Angelo, S. (1997). J. Chem. Soc. Dalton Trans. pp. 1801–1803.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography