PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m426–m427.
Published online 2010 March 20. doi:  10.1107/S1600536810009670
PMCID: PMC2983831

catena-Poly[sodium-di-μ-aqua-sodium-bis[μ-2,2,2-trichloro-N-(dimorpholinophosphoryl)acetamide]]

Abstract

The title compound, [Na2(C10H16Cl3N3O4P)2(H2O)2]n, can be considered as a two-dimensional coordination polymer in which one-dimensional chains are connected to each other by inter­molecular C—H(...)O hydrogen bonds involving the water mol­ecules. The NaI ion is five-coordinated in a distorted trigonal-bipyramidal geometry. The connection between the two NaI ions is facilitated by the two μ-O atoms of the carbonyl group of the 2,2,2-trichloro-N-(dimorpholino­phosphor­yl)acetamide (CAPh) ligand. A bridging coordination of the CAPh ligand via the carbonyl O atom is observed for the first time. The bridging water mol­ecules form inter­molecular O—H(...)O hydrogen bonds with the O atoms of the morpholine rings and the phosphoryl groups of neighboring CAPh mol­ecules.

Related literature

For the pharmacological and biological properties of carbacyl­amido­phosphate (CAPh) derivatives, see: Barak et al. (2000 [triangle]); Grimes et al. (2008 [triangle]); Adams et al. (2002 [triangle]); For structural analogues of phospho­rylated carbacyl­amides and their coordination properties, see: Amirkhanov et al. (1996 [triangle]); Rebrova et al. (1982 [triangle]); Gubina et al. (1999 [triangle]); Ovchinnikov et al. (2001 [triangle]); Gholivand & Shariatinia (2006 [triangle]); Trush et al. (2005 [triangle]); Zhang et al. (1992 [triangle]). For details of the synthesis, see: Kirsanov & Derkach (1956 [triangle]). For the synthesis of the 2,2,2-trichloro-N-(dimorpholinophosphoryl)acetamide (HL) ligand, see: Ovchyn­nikov et al. (1998 [triangle]). For coordination compounds of HL, see: Ovchynnikov et al. (2000 [triangle]); Trush et al. (2002 [triangle], 2003 [triangle]). For the trigonality index τ, see: Addison et al. (1984 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m426-scheme1.jpg

Experimental

Crystal data

  • [Na2(C10H16Cl3N3O4P)2(H2O)2]
  • M r = 841.17
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m426-efi1.jpg
  • a = 7.522 (5) Å
  • b = 10.329 (4) Å
  • c = 12.451 (5) Å
  • α = 84.17 (4)°
  • β = 80.89 (4)°
  • γ = 70.16 (5)°
  • V = 897.3 (8) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.65 mm−1
  • T = 294 K
  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Oxford Diffraction Xcalibur3 diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006 [triangle]) T min = 0.782, T max = 0.938
  • 10258 measured reflections
  • 5137 independent reflections
  • 3339 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.121
  • S = 0.95
  • 5137 reflections
  • 236 parameters
  • 6 restraints
  • H-atom parameters constrained
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.55 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810009670/jh2135sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810009670/jh2135Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Carbacylamidophosphate compounds have been attracting substantial interest and are widely used to date. These compounds have been employed in pharmacology as potential novel antibacterial agents and prodrugs (Adams et al., 2002, Kimberly D. Grimes et al., 2008); some carbacylamidophosphates are effective pesticides (Barak et al., 2000). The ability of carbacylamidophosphates to form stable complexes both with transition and non-transition metals via their =P(O)N(H)C(O)- moiety has been investigated extensively by Amirkhanov et al., 1996, Trush et al., 2005, Ovchinnikov et al., 2001, Gholivand et al., 2006, Wenjun Zhang et al., 1992. This paper is devoted to the crystal structure of the sodium salt of 2,2,2-trichloro-N-(dimorpholin-4-yl-phosphoryl)acetamide (HL) NaL and the first fact of bridging coordination of CAPh ligand via carbonyl oxygen. Coordination compounds of 4f-metal ions with HL have been reported earlier (Ovchynnikov et al., 2000, Trush et al., 2002, Trush et al., 2003).

The molecular structure of the title compound is shown in Fig. 1. The structure is build up of [C10H18Cl3N3NaO5P]n chains along [001]. The polymeric chain contains Na atoms, which are five-coordinated by three O atoms of 2 HL molecules and two O atoms of water. Each CAPh ligand links Na+ centers via its phosphoryl and carbonyl groups in a chelating manner. Oxygen atom of carbonyl group is a bridging atom between two sodium ions. The value of the trigonality index τ (τ = (β-α)/60, where α and β are the largest coordination angles) (Addison et al., 1984) is 0,049 for Na(1) [α = O(4)—Na(1)—O(1 W) = 140,69°, β = O(3)—Na(1)—O(4) = 143,63°]. It indicates that sodium (I) ion is in a distorted trigonal bipyramidal coordination geometry. One of the equatorial distances is significantly longer [Na(1)—O(1 W) = 3,022 Å] than all other Na—O distances, which are almost equivalent. The values of the O—Na—O angles also reveal the strong deviation of the sodium (I) atom environment from the ideal trigonal- bipyramidal geometry. The P=O and C=O distances in the chelate ring and P—N distances in the morpholine substituents of L- in the sodium salt are longer than in the free ligand (i. e. uncoordinated) (Table 1). But the P—Namide distance is shortened upon coordination, indicating the presence of π-conjugation in the coordinated anion. Carbonyl group oxygen forms two types of bonds with Na: intrachelating bond O—Na is some longer, than bond with other Na atom. The bridging water molecules are involved in hydrogen bonding interactions (Table 1). Intramolecular hydrogen bonds stabilize the two-dimensional structure of the title compound. They are oriented towards the neighboring oxygen atom O(2) of the morpholine rings. The other H atom of the water molecule makes a strong intermolecular H bond to O(3) of P=O group of neighboring L- molecule. The intermolecular hydrogen bonds are arranged in inversion symmetric pairs that connect molecules along the c-axis leading to strongly hydrogen bonded strings of the molecules along that axis (Figure 2).

Experimental

The synthesis of HL was carried out according to the method described early (Ovchynnikov et al., 1998).

HL (0,38 g, 1 mmol) was dissolved in methanol (10 ml) and added to 10 ml of sodium methoxide (0,023 g, 1 mmol of Na in methanol). After 20 min the solution was evaporated and the residue was dissolved in water. The resulting clear solution was left at ambient temperature for crystallization in air. The crystals were separated by filtration after 48 h and dried in air. Yield: 95-98%. IR (KBr pellet, cm-1): 1605 (s, CO), 1344 (Amide II), 1152 (s, PO).

Figures

Fig. 1.
A portion of polymeric chain of the title compound, showing the 30% probability displacement ellipsoids and atomic numbering [symmetry codes: ]. H atoms of L- and Cl atoms of trychlormethyl groups have been omitted for clarity.
Fig. 2.
A schematic view of packing diagram from [Na(L)(H2O)]n (projection along the y direction). H atoms and Cl atoms of trychlormethyl groups have been omitted for clarity.

Crystal data

[Na2(C10H16Cl3N3O4P)2(H2O)2]Z = 1
Mr = 841.17F(000) = 432
Triclinic, P1Dx = 1.557 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.522 (5) ÅCell parameters from 2305 reflections
b = 10.329 (4) Åθ = 2.9–32.1°
c = 12.451 (5) ŵ = 0.65 mm1
α = 84.17 (4)°T = 294 K
β = 80.89 (4)°Block, colourless
γ = 70.16 (5)°0.40 × 0.30 × 0.20 mm
V = 897.3 (8) Å3

Data collection

Oxford Diffraction Xcalibur3 diffractometer5137 independent reflections
Radiation source: Enhance (Mo) X-ray Source3339 reflections with I > 2σ(I)
graphiteRint = 0.027
Detector resolution: 16.1827 pixels mm-1θmax = 30.0°, θmin = 3.0°
ω scansh = −9→10
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006)k = −14→14
Tmin = 0.782, Tmax = 0.938l = −17→17
10258 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.121H-atom parameters constrained
S = 0.95w = 1/[σ2(Fo2) + (0.0695P)2] where P = (Fo2 + 2Fc2)/3
5137 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.44 e Å3
6 restraintsΔρmin = −0.55 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Na10.74853 (12)−0.02122 (8)0.49141 (6)0.0462 (2)
P10.14168 (7)0.19927 (5)0.73292 (4)0.03306 (13)
Cl10.7919 (6)−0.0374 (6)0.7663 (5)0.0975 (19)0.30
Cl20.5558 (14)−0.1440 (9)0.9126 (2)0.082 (3)0.30
Cl30.6925 (9)−0.2632 (4)0.7073 (5)0.109 (2)0.30
Cl1A0.8282 (3)−0.0794 (3)0.7362 (2)0.1334 (12)0.70
Cl2A0.5706 (5)−0.1301 (4)0.91551 (8)0.0708 (8)0.70
Cl3A0.6346 (6)−0.26558 (18)0.7220 (3)0.1413 (14)0.70
N1−0.0076 (2)0.25733 (16)0.84197 (13)0.0387 (4)
N20.2136 (2)0.33001 (16)0.68794 (12)0.0376 (3)
N30.3105 (2)0.07308 (16)0.78548 (13)0.0398 (4)
O1−0.2764 (2)0.36756 (19)1.02222 (14)0.0712 (5)
O20.3238 (3)0.55916 (17)0.61132 (14)0.0605 (4)
O30.05740 (19)0.16343 (14)0.64384 (11)0.0436 (3)
O40.4863 (2)0.00857 (16)0.61885 (11)0.0492 (4)
C1−0.0371 (3)0.1708 (2)0.93747 (19)0.0533 (5)
H1B0.08210.09870.94810.064*
H1A−0.12850.12740.92680.064*
C2−0.1092 (4)0.2545 (3)1.03586 (19)0.0689 (7)
H2A−0.13600.19621.09800.083*
H2B−0.01080.28851.05110.083*
C3−0.2430 (4)0.4527 (2)0.9306 (2)0.0621 (6)
H3A−0.14570.49020.94210.074*
H3B−0.35900.52920.92220.074*
C4−0.1799 (3)0.3747 (2)0.82922 (18)0.0517 (5)
H4B−0.28020.34230.81460.062*
H4A−0.15440.43470.76800.062*
C50.3079 (4)0.3877 (2)0.75538 (18)0.0520 (5)
H5B0.44450.34030.74430.062*
H5A0.26180.37530.83170.062*
C60.2665 (4)0.5365 (3)0.7248 (2)0.0583 (6)
H6A0.13090.58430.74210.070*
H6B0.33320.57440.76710.070*
C70.2333 (4)0.5012 (2)0.54594 (19)0.0577 (6)
H7A0.27770.51580.46960.069*
H7B0.09660.54770.55780.069*
C80.2748 (3)0.3510 (2)0.57246 (16)0.0462 (5)
H8B0.20740.31480.52930.055*
H8A0.41030.30270.55560.055*
C90.4531 (3)0.00130 (18)0.71992 (15)0.0344 (4)
C100.61717 (19)−0.11305 (14)0.77559 (8)0.0466 (5)
O1W0.8336 (3)0.16719 (17)0.49163 (14)0.0647 (5)
H1WA0.89080.17320.55560.097*
H1WB0.78210.26730.47840.097*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Na10.0504 (5)0.0472 (5)0.0453 (4)−0.0219 (4)0.0012 (4)−0.0133 (4)
P10.0316 (2)0.0281 (2)0.0357 (2)−0.00463 (17)−0.00432 (19)−0.00264 (18)
Cl10.064 (3)0.116 (3)0.139 (5)−0.054 (3)−0.054 (3)0.027 (3)
Cl20.101 (5)0.052 (2)0.050 (3)0.014 (2)0.008 (3)0.025 (2)
Cl30.134 (3)0.065 (3)0.057 (2)0.067 (2)−0.013 (2)−0.0271 (19)
Cl1A0.0365 (6)0.226 (3)0.1052 (14)−0.0258 (11)−0.0134 (7)0.0845 (18)
Cl2A0.0624 (10)0.0851 (18)0.0385 (10)0.0109 (10)−0.0100 (8)−0.0020 (9)
Cl3A0.274 (4)0.0300 (8)0.0826 (14)−0.0019 (12)−0.0180 (19)−0.0110 (7)
N10.0328 (8)0.0308 (8)0.0405 (8)0.0016 (6)0.0014 (7)0.0008 (7)
N20.0426 (8)0.0367 (8)0.0346 (8)−0.0143 (7)−0.0067 (7)−0.0013 (7)
N30.0375 (8)0.0341 (8)0.0377 (8)0.0006 (6)−0.0022 (7)−0.0033 (7)
O10.0557 (10)0.0682 (11)0.0529 (10)0.0173 (8)0.0118 (8)0.0019 (9)
O20.0806 (12)0.0514 (9)0.0615 (10)−0.0379 (9)−0.0111 (9)0.0026 (8)
O30.0414 (7)0.0408 (7)0.0504 (8)−0.0124 (6)−0.0115 (7)−0.0057 (6)
O40.0415 (7)0.0600 (9)0.0353 (7)−0.0027 (7)−0.0040 (6)−0.0034 (6)
C10.0492 (12)0.0393 (11)0.0546 (13)−0.0023 (9)0.0071 (11)0.0079 (10)
C20.0613 (15)0.0683 (17)0.0442 (12)0.0153 (12)0.0022 (12)0.0038 (12)
C30.0486 (12)0.0448 (13)0.0688 (16)0.0101 (10)0.0054 (12)−0.0041 (11)
C40.0375 (10)0.0479 (12)0.0509 (12)0.0067 (9)−0.0033 (9)0.0057 (10)
C50.0600 (13)0.0602 (14)0.0483 (12)−0.0318 (12)−0.0184 (11)0.0008 (10)
C60.0734 (16)0.0563 (14)0.0560 (13)−0.0320 (13)−0.0115 (13)−0.0104 (11)
C70.0838 (17)0.0493 (13)0.0477 (12)−0.0317 (13)−0.0145 (12)0.0066 (10)
C80.0576 (12)0.0406 (11)0.0377 (10)−0.0158 (10)0.0021 (9)−0.0047 (9)
C90.0346 (9)0.0284 (8)0.0369 (9)−0.0060 (7)−0.0045 (8)−0.0019 (7)
C100.0432 (10)0.0420 (11)0.0400 (10)0.0017 (9)−0.0003 (9)0.0005 (9)
O1W0.0899 (12)0.0424 (9)0.0748 (11)−0.0292 (9)−0.0365 (10)0.0044 (8)

Geometric parameters (Å, °)

Na1—O1W2.2458 (19)O3—Na1i2.322 (2)
Na1—O42.280 (2)O4—C91.243 (2)
Na1—O3i2.322 (2)O4—Na1i2.366 (2)
Na1—O4i2.366 (2)C1—C21.493 (3)
Na1—Cl1A3.158 (3)C1—H1B0.9700
Na1—P1i3.3388 (19)C1—H1A0.9700
P1—O31.4949 (15)C2—H2A0.9700
P1—O31.4949 (15)C2—H2B0.9700
P1—N21.6358 (18)C3—C41.492 (4)
P1—N11.6401 (19)C3—H3A0.9700
P1—N31.645 (2)C3—H3B0.9700
P1—Na1i3.3388 (19)C4—H4B0.9700
Cl1—C101.7264 (14)C4—H4A0.9700
Cl2—C101.7219 (13)C5—C61.483 (3)
Cl3—C101.7222 (14)C5—H5B0.9700
Cl1A—C101.7246 (15)C5—H5A0.9700
Cl2A—C101.7248 (12)C6—H6A0.9700
Cl3A—C101.7290 (13)C6—H6B0.9700
N1—C11.448 (3)C7—C81.488 (3)
N1—C41.461 (3)C7—H7A0.9700
N2—C81.456 (2)C7—H7B0.9700
N2—C51.463 (3)C8—H8B0.9700
N3—C91.293 (3)C8—H8A0.9700
O1—C31.412 (3)C9—C101.586 (3)
O1—C21.416 (3)O1W—H1WA0.9800
O2—C71.427 (3)O1W—H1WB0.9800
O2—C61.430 (3)
O1W—Na1—O4106.11 (9)O1—C2—H2B109.2
O1W—Na1—O3i110.04 (8)C1—C2—H2B109.2
O4—Na1—O3i143.65 (7)H2A—C2—H2B107.9
O1W—Na1—O4i117.21 (8)O1—C3—C4111.4 (2)
O4—Na1—O4i78.92 (7)O1—C3—H3A109.4
O3i—Na1—O4i81.39 (7)C4—C3—H3A109.4
O1W—Na1—Cl1A86.78 (8)O1—C3—H3B109.4
O4—Na1—Cl1A64.22 (7)C4—C3—H3B109.4
O3i—Na1—Cl1A121.01 (9)H3A—C3—H3B108.0
O4i—Na1—Cl1A140.84 (6)N1—C4—C3109.77 (19)
O1W—Na1—P1i119.98 (7)N1—C4—H4B109.7
O4—Na1—P1i127.30 (6)C3—C4—H4B109.7
O3i—Na1—P1i22.70 (4)N1—C4—H4A109.7
O4i—Na1—P1i58.77 (6)C3—C4—H4A109.7
Cl1A—Na1—P1i137.07 (7)H4B—C4—H4A108.2
O1W—Na1—Na1i118.55 (8)N2—C5—C6108.99 (19)
O4—Na1—Na1i40.33 (5)N2—C5—H5B109.9
O3i—Na1—Na1i114.40 (6)C6—C5—H5B109.9
O4i—Na1—Na1i38.58 (5)N2—C5—H5A109.9
Cl1A—Na1—Na1i103.59 (6)C6—C5—H5A109.9
P1i—Na1—Na1i92.48 (5)H5B—C5—H5A108.3
O1W—Na1—Na1ii48.58 (7)O2—C6—C5111.5 (2)
O4—Na1—Na1ii130.58 (6)O2—C6—H6A109.3
O3i—Na1—Na1ii78.91 (6)C5—C6—H6A109.3
O4i—Na1—Na1ii147.34 (6)O2—C6—H6B109.3
Cl1A—Na1—Na1ii71.78 (5)C5—C6—H6B109.3
P1i—Na1—Na1ii100.05 (5)H6A—C6—H6B108.0
Na1i—Na1—Na1ii165.63 (5)O2—C7—C8111.4 (2)
O3—P1—N2107.86 (9)O2—C7—H7A109.3
O3—P1—N2107.86 (9)C8—C7—H7A109.3
O3—P1—N1115.65 (9)O2—C7—H7B109.3
O3—P1—N1115.65 (9)C8—C7—H7B109.3
N2—P1—N1102.81 (9)H7A—C7—H7B108.0
O3—P1—N3116.42 (9)N2—C8—C7108.85 (18)
O3—P1—N3116.42 (9)N2—C8—H8B109.9
N2—P1—N3111.58 (10)C7—C8—H8B109.9
N1—P1—N3101.70 (9)N2—C8—H8A109.9
N2—P1—Na1i100.79 (7)C7—C8—H8A109.9
N1—P1—Na1i149.19 (7)H8B—C8—H8A108.3
N3—P1—Na1i87.59 (8)O4—C9—N3130.61 (18)
C10—Cl1A—Na191.55 (11)O4—C9—C10113.42 (15)
C1—N1—C4111.08 (17)N3—C9—C10115.95 (15)
C1—N1—P1123.56 (14)C9—C10—Cl2113.7 (3)
C4—N1—P1118.63 (14)C9—C10—Cl3110.5 (2)
C8—N2—C5111.34 (16)Cl2—C10—Cl3110.9 (4)
C8—N2—P1120.92 (13)C9—C10—Cl1A108.77 (14)
C5—N2—P1121.27 (14)Cl2—C10—Cl1A117.4 (4)
C9—N3—P1118.23 (14)Cl3—C10—Cl1A93.9 (3)
C3—O1—C2110.45 (18)C9—C10—Cl2A114.42 (16)
C7—O2—C6111.22 (16)Cl3—C10—Cl2A116.2 (3)
P1—O3—Na1i120.47 (9)Cl1A—C10—Cl2A111.12 (18)
C9—O4—Na1136.68 (13)C9—C10—Cl1102.9 (2)
C9—O4—Na1i121.40 (13)Cl2—C10—Cl1106.0 (5)
Na1—O4—Na1i101.08 (7)Cl3—C10—Cl1112.7 (3)
N1—C1—C2110.33 (19)Cl2A—C10—Cl198.9 (3)
N1—C1—H1B109.6C9—C10—Cl3A104.82 (15)
C2—C1—H1B109.6Cl2—C10—Cl3A102.2 (4)
N1—C1—H1A109.6Cl1A—C10—Cl3A109.0 (2)
C2—C1—H1A109.6Cl2A—C10—Cl3A108.5 (2)
H1B—C1—H1A108.1Cl1—C10—Cl3A127.7 (3)
O1—C2—C1112.3 (2)Na1—O1W—H1WA115.1
O1—C2—H2A109.2Na1—O1W—H1WB139.9
C1—C2—H2A109.2H1WA—O1W—H1WB94.1
O1W—Na1—Cl1A—C10133.78 (14)O1W—Na1—O4—Na1i115.37 (8)
O4—Na1—Cl1A—C1024.16 (11)O3i—Na1—O4—Na1i−58.44 (12)
O3i—Na1—Cl1A—C10−114.71 (13)O4i—Na1—O4—Na1i0.0
O4i—Na1—Cl1A—C102.8 (2)Cl1A—Na1—O4—Na1i−166.44 (9)
P1i—Na1—Cl1A—C10−93.81 (14)P1i—Na1—O4—Na1i−35.57 (8)
Na1i—Na1—Cl1A—C1015.17 (14)Na1ii—Na1—O4—Na1i164.12 (7)
Na1ii—Na1—Cl1A—C10−178.99 (14)C4—N1—C1—C2−53.9 (3)
O3—P1—N1—C194.71 (18)P1—N1—C1—C2155.41 (17)
O3—P1—N1—C194.71 (18)C3—O1—C2—C1−57.4 (3)
N2—P1—N1—C1−148.03 (17)N1—C1—C2—O155.1 (3)
N3—P1—N1—C1−32.41 (19)C2—O1—C3—C458.7 (3)
Na1i—P1—N1—C172.9 (2)C1—N1—C4—C355.3 (3)
O3—P1—N1—C4−53.94 (18)P1—N1—C4—C3−152.41 (17)
O3—P1—N1—C4−53.94 (18)O1—C3—C4—N1−57.7 (3)
N2—P1—N1—C463.32 (17)C8—N2—C5—C657.6 (3)
N3—P1—N1—C4178.94 (15)P1—N2—C5—C6−150.46 (17)
Na1i—P1—N1—C4−75.8 (2)C7—O2—C6—C557.2 (3)
O3—P1—N2—C8−29.02 (18)N2—C5—C6—O2−56.6 (3)
O3—P1—N2—C8−29.02 (18)C6—O2—C7—C8−57.4 (3)
N1—P1—N2—C8−151.68 (16)C5—N2—C8—C7−57.7 (2)
N3—P1—N2—C8100.04 (17)P1—N2—C8—C7150.24 (17)
Na1i—P1—N2—C88.36 (16)O2—C7—C8—N257.1 (3)
O3—P1—N2—C5−178.34 (16)Na1—O4—C9—N3144.80 (18)
O3—P1—N2—C5−178.34 (16)Na1i—O4—C9—N3−47.9 (3)
N1—P1—N2—C559.00 (19)Na1—O4—C9—C10−33.5 (3)
N3—P1—N2—C5−49.28 (19)Na1i—O4—C9—C10133.83 (12)
Na1i—P1—N2—C5−140.96 (16)P1—N3—C9—O4−1.7 (3)
O3—P1—N3—C952.00 (18)P1—N3—C9—C10176.53 (10)
O3—P1—N3—C952.00 (18)O4—C9—C10—Cl2−169.7 (4)
N2—P1—N3—C9−72.38 (17)N3—C9—C10—Cl211.8 (4)
N1—P1—N3—C9178.63 (15)O4—C9—C10—Cl3−44.2 (3)
Na1i—P1—N3—C928.27 (15)N3—C9—C10—Cl3137.3 (3)
N2—P1—O3—O30.00 (17)O4—C9—C10—Cl1A57.5 (2)
N1—P1—O3—O30.00 (13)N3—C9—C10—Cl1A−121.00 (19)
N3—P1—O3—O30.00 (14)O4—C9—C10—Cl2A−177.6 (2)
Na1i—P1—O3—O30.00 (14)N3—C9—C10—Cl2A3.9 (3)
O3—P1—O3—Na1i0(50)O4—C9—C10—Cl176.3 (3)
N2—P1—O3—Na1i84.15 (12)N3—C9—C10—Cl1−102.3 (3)
N1—P1—O3—Na1i−161.45 (8)O4—C9—C10—Cl3A−58.9 (2)
N3—P1—O3—Na1i−42.12 (12)N3—C9—C10—Cl3A122.6 (2)
O1W—Na1—O4—C9−75.7 (2)Na1—Cl1A—C10—C9−44.71 (14)
O3i—Na1—O4—C9110.5 (2)Na1—Cl1A—C10—Cl2−175.6 (3)
O4i—Na1—O4—C9169.0 (2)Na1—Cl1A—C10—Cl368.4 (2)
Cl1A—Na1—O4—C92.54 (19)Na1—Cl1A—C10—Cl2A−171.53 (16)
P1i—Na1—O4—C9133.41 (18)Na1—Cl1A—C10—Cl1−119.3 (9)
Na1i—Na1—O4—C9169.0 (2)Na1—Cl1A—C10—Cl3A69.00 (16)
Na1ii—Na1—O4—C9−26.9 (2)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3B···O1iii0.972.593.443 (4)147
O1W—H1WA···O3iv0.981.772.716 (3)163
O1W—H1WB···O2v0.982.002.917 (3)155

Symmetry codes: (iii) −x−1, −y+1, −z+2; (iv) x+1, y, z; (v) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2135).

References

  • Adams, L. A., Cox, R. J., Gibson, J. S., Mayo-Martin, M. B., Walter, M. & Whittingham, W. (2002). Chem. Commun.18, 2004–2005. [PubMed]
  • Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  • Amirkhanov, V. M., Kapshuk, A. A., Ovchinnikov, V. A. & Skopenko, V. V. (1996). Zh. Neorg. Khim.41, 1470–1474.
  • Barak, D., Ordentlich, A., Kaplan, D., Barak, R., Mizrahi, D., Kronman, C., Segall, Y., Velan, B. & Shaerman, A. (2000). Biochemistry, 39, 1156–1161. [PubMed]
  • Gholivand, K. & Shariatinia, Z. (2006). J. Organomet. Chem.691, 4215–4224.
  • Grimes, K. D., Lu, Y. J., Zhang, Y. M., Luna, A. V., Hurdle, J. G., Carson, E. I., Qi, J., Kudrimoti, S., Rock, O. C. & Lee, R. E. (2008). ChemMedChem, 3, 1936–1945. [PMC free article] [PubMed]
  • Gubina, K., Ovchynnikov, V., Amirkhanov, V., Sliva, T., Skopenko, V., Glowiak, T. & Kozlowski, H. (1999). Z. Naturforsch. Teil B, 54, 1357–1359.
  • Kirsanov, A. & Derkach, G. (1956). Zh. Obshch. Khim.26, 2009–2014.
  • Ovchinnikov, V. A., Amirkhanov, V. M., Domasevich, K. V., Sieler, J. & Skopenko, V. V. (2001). Zh. Neorg. Khim.46, 615–619.
  • Ovchynnikov, V. A., Amirkhanov, V. M., Timoshenko, T. P., Glowiak, T. & Kozlowski, H. (1998). Z. Naturforsch. Teil B, 53, 481–484.
  • Ovchynnikov, V. A., Timoshenko, T. P., Amirkhanov, V. M., Sieler, J. & Skopenko, V. V. (2000). Z. Naturforsch. Teil B, 55, 262–268.
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Rebrova, O., Biyushkin, V., Malinovski, T., Ovrucki, V., Procenko, L., Dneprova, T. & Mazus, M. (1982). Dokl. Akad. Nauk. SSSR, 324, 103–108.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Trush, E. A., Amirkhanov, V. M., Ovchynnikov, V. A., Swiatek-Kozlowska, J., Lanikina, K. A. & Domasevitch, K. V. (2003). Polyhedron, 9, 1221–1229.
  • Trush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). Polyhedron, 24, 1007–1014.
  • Trush, E. A., Ovchynnikov, V. A., Domasevitch, K. V., Swiatek-Kozlowska, J., Zub, V. Ya. & Amirkhanov, V. M. (2002). Z. Naturforsch. Teil B, 57, 746–750.
  • Zhang, W., Tan, M., Liu, W. & Yu, K. (1992). Polyhedron, 11, 1581–1585.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography