PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o744.
Published online 2010 March 3. doi:  10.1107/S1600536810007464
PMCID: PMC2983824

(E)-3-(2-Chloro-6-methyl-3-quinol­yl)-1-(2,3-dihydro-1,4-benzodioxin-6-yl)prop-2-en-1-one

Abstract

In the title mol­ecule, C21H16ClNO3, the quinoline and benzene rings are inclined at 56.96 (6)° with respect to each other and the dioxine ring is in a twist-chair conformation. The structure is devoid of any classical hydrogen bonds. Rather weak inter­molecular hydrogen-bonding inter­actions of the types C—H(...)N and C—H(...)O are present, consolidating the crystal structure.

Related literature

For background to chalcones, see: Mishra et al. (2008 [triangle]); Xia et al. (2000 [triangle]); Vaya et al. (1997 [triangle]); Bhakuni & Chaturvedi (1984 [triangle]); Nielsen et al. (2005 [triangle]); Wu et al. (2003 [triangle]). For comparison bond lengths, see: Allen et al. (1987 [triangle]). For a related structure, see: Rizvi et al. (2010 [triangle]) For the preparation of the precursor 2-chloro-6-methyl-3-formyl­quinoline, see: Meth-Cohn et al. (1981 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o744-scheme1.jpg

Experimental

Crystal data

  • C21H16ClNO3
  • M r = 365.80
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o744-efi1.jpg
  • a = 6.370 (3) Å
  • b = 38.735 (9) Å
  • c = 7.409 (4) Å
  • β = 114.93 (2)°
  • V = 1657.8 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 173 K
  • 0.18 × 0.16 × 0.14 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1997 [triangle]) T min = 0.956, T max = 0.966
  • 6971 measured reflections
  • 2933 independent reflections
  • 2256 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.091
  • S = 1.03
  • 2933 reflections
  • 236 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810007464/si2245sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007464/si2245Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors greatly appreciate financial support from the Higher Education Commission, Islamabad, and the Institute of Chemistry, University of the Punjab, Lahore.

supplementary crystallographic information

Comment

α,β-Unsaturated ketones or 1,3-diaryl-2-propen-1-ones, commonly known as chalcones, have already been recognized as antimalarial (Mishra et al., 2008), antitumor (Xia et al., 2000), antioxidant (Vaya et al., 1997), antifungal (Bhakuni & Chaturvedi, 1984), antibacterial (Nielsen et al., 2005), and anti-AIDS agents (Wu et al., 2003). Continuing our investigations in this important area (Rizvi et al., 2010) we now report the synthesis and crystal structure of a new chalcone, containing quinolyl ring system, (2E)-3-(2-chloro-6-methylquinolin-3-yl)-1-(2,3-dihydro-1,4-benzodioxin-6-yl) prop-2-en-1-one, in this article. A series of chalcones related to the title compound is under investigation for their biological activities in our laboratory.

The title molecule is presented in Fig. 1. The bond distances (Allen et al., 1987) and angles are as expected and agree with the corresponding bond distances and angles reported in a closely related compound (Rizvi et al., 2010). The least-square planes of the quinoline and phenyl rings defined by atoms N1/C1—C9 and C14—C19, respectively, are inclined at 56.95 (6)° with respect to each other. The dioxine ring is in a twist-chair conformation with C20 and C21 atoms 0.425 (3) and 0.307 (3) Å on the opposite sides of the plane formed by the remining ring atoms. The structure is devoid of any classical hydrogen bonds. However, short intramolecular interactions involving Cl1 and O1 and rather weak hydrogen bonding inter-molecular interactions of the types C—H···N and C—H···O are present consolidating the crystal packing; details have been provided in Table 1.

Experimental

The precursor 2-chloro-6-methyl-3-formylquinoline was prepared by reported method (Meth-Cohn et al., 1981). A mixture of 2-chloro-6-methyl-3-formylquinoline (2.055 g, 10 mmol) and 6-acetyl-1,4-benzodioxane (1.7819 g, 10 mmol) in methanol (50 ml) was stirred at room temperature followed by dropwise addition of aq. NaOH (4 ml, 10%). The stirring was continued (2 h) and the reaction mixture was kept at 273 K (24 h). Then it was poured on to ice-cold water (200 ml). The precipitates were collected by filtration, washed with cold water followed by cold MeOH. The resulting chalcone was recrystallised from CHCl3 to obtain the title compound as yellow crystalline product, (yield 2.76 g, 7.55 mmol, 75.5%), (m.p. 458-460 K).

Refinement

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms were included at geometrically idealized positions and refined in riding-model approximation with the following constraints: C—H distances were set to 0.95, 0.98 and 0.99 Å for aromatic, methyl and methylene H-atoms, respectively, and Uiso(H) = 1.2Ueq(C). The final difference map was essentially featurless.

Figures

Fig. 1.
ORTEP-3 (Farrugia, 1997) drawing of (I) with displacement ellipsoids plotted at 50% probability level.

Crystal data

C21H16ClNO3F(000) = 760
Mr = 365.80Dx = 1.466 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6971 reflections
a = 6.370 (3) Åθ = 3.6–25.3°
b = 38.735 (9) ŵ = 0.25 mm1
c = 7.409 (4) ÅT = 173 K
β = 114.93 (2)°Prism, colorless
V = 1657.8 (12) Å30.18 × 0.16 × 0.14 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer2933 independent reflections
Radiation source: fine-focus sealed tube2256 reflections with I > 2σ(I)
graphiteRint = 0.037
ω and [var phi] scansθmax = 25.4°, θmin = 3.6°
Absorption correction: multi-scan (SORTAV; Blessing, 1997)h = −7→7
Tmin = 0.956, Tmax = 0.966k = −46→45
6971 measured reflectionsl = −8→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.091H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0323P)2 + 0.8409P] where P = (Fo2 + 2Fc2)/3
2933 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.61049 (9)0.077424 (13)1.07582 (8)0.03394 (16)
O10.1834 (2)0.18022 (3)0.7158 (2)0.0336 (4)
O20.0375 (2)0.30663 (3)0.6559 (2)0.0320 (4)
O30.4801 (2)0.33735 (3)0.7522 (2)0.0338 (4)
N10.8742 (3)0.05188 (4)0.9228 (2)0.0267 (4)
C10.9871 (3)0.05159 (5)0.8010 (3)0.0246 (4)
C21.1233 (3)0.02252 (5)0.8050 (3)0.0287 (5)
H21.13810.00390.89320.034*
C31.2333 (3)0.02116 (5)0.6821 (3)0.0306 (5)
H31.32350.00140.68590.037*
C41.2168 (3)0.04847 (5)0.5487 (3)0.0276 (5)
C51.0885 (3)0.07697 (5)0.5472 (3)0.0269 (4)
H51.07900.09560.46050.032*
C60.9699 (3)0.07956 (5)0.6704 (3)0.0243 (4)
C70.8272 (3)0.10775 (5)0.6683 (3)0.0258 (4)
H70.81310.12690.58380.031*
C80.7085 (3)0.10785 (5)0.7868 (3)0.0241 (4)
C90.7448 (3)0.07847 (5)0.9125 (3)0.0255 (4)
C101.3379 (4)0.04523 (6)0.4128 (3)0.0350 (5)
H10A1.31230.06630.33280.042*
H10B1.27570.02530.32460.042*
H10C1.50420.04200.49280.042*
C110.5459 (3)0.13523 (5)0.7802 (3)0.0261 (5)
H110.41580.12820.80250.031*
C120.5602 (3)0.16871 (5)0.7467 (3)0.0268 (5)
H120.69040.17740.73020.032*
C130.3705 (3)0.19247 (5)0.7352 (3)0.0259 (4)
C140.4061 (3)0.23038 (5)0.7428 (3)0.0222 (4)
C150.2138 (3)0.25160 (5)0.6999 (3)0.0239 (4)
H150.06670.24150.66830.029*
C160.2342 (3)0.28706 (5)0.7026 (3)0.0235 (4)
C170.4504 (3)0.30212 (5)0.7508 (3)0.0252 (4)
C180.6434 (3)0.28131 (5)0.8000 (3)0.0300 (5)
H180.79150.29160.83820.036*
C190.6226 (3)0.24564 (5)0.7942 (3)0.0278 (5)
H190.75550.23160.82500.033*
C200.0868 (3)0.34184 (5)0.7204 (3)0.0290 (5)
H20A0.14470.34300.86700.035*
H20B−0.05660.35580.66070.035*
C210.2653 (4)0.35620 (5)0.6590 (3)0.0346 (5)
H21A0.20770.35470.51250.041*
H21B0.29250.38080.69740.041*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0392 (3)0.0327 (3)0.0351 (3)0.0045 (2)0.0207 (2)0.0033 (2)
O10.0288 (8)0.0239 (8)0.0471 (9)−0.0005 (6)0.0150 (7)0.0008 (6)
O20.0259 (7)0.0194 (7)0.0490 (9)0.0032 (6)0.0141 (7)−0.0016 (6)
O30.0339 (8)0.0204 (7)0.0498 (9)−0.0021 (6)0.0202 (7)0.0013 (7)
N10.0287 (9)0.0218 (9)0.0289 (9)0.0011 (7)0.0113 (8)0.0026 (7)
C10.0238 (10)0.0200 (10)0.0269 (11)−0.0003 (8)0.0077 (9)−0.0001 (8)
C20.0314 (11)0.0216 (10)0.0333 (12)0.0026 (8)0.0138 (9)0.0055 (9)
C30.0312 (11)0.0228 (11)0.0375 (12)0.0034 (9)0.0142 (10)0.0004 (9)
C40.0267 (10)0.0237 (11)0.0323 (11)−0.0023 (8)0.0123 (9)−0.0019 (9)
C50.0281 (10)0.0220 (10)0.0291 (11)−0.0034 (8)0.0106 (9)0.0039 (8)
C60.0213 (9)0.0199 (10)0.0278 (11)−0.0024 (8)0.0066 (8)−0.0018 (8)
C70.0270 (10)0.0175 (10)0.0289 (11)−0.0025 (8)0.0078 (9)0.0030 (8)
C80.0232 (10)0.0185 (10)0.0263 (10)−0.0018 (8)0.0063 (8)−0.0011 (8)
C90.0267 (10)0.0224 (10)0.0264 (10)−0.0025 (8)0.0102 (8)−0.0015 (8)
C100.0375 (12)0.0321 (12)0.0404 (13)−0.0001 (9)0.0214 (11)0.0003 (10)
C110.0246 (10)0.0220 (11)0.0278 (11)0.0003 (8)0.0072 (9)−0.0027 (8)
C120.0265 (10)0.0247 (11)0.0282 (11)0.0016 (8)0.0104 (9)−0.0012 (8)
C130.0267 (10)0.0246 (11)0.0234 (10)−0.0003 (8)0.0075 (9)0.0014 (8)
C140.0258 (10)0.0209 (10)0.0206 (10)0.0025 (8)0.0103 (8)0.0010 (8)
C150.0222 (10)0.0228 (11)0.0265 (10)−0.0013 (8)0.0101 (8)0.0002 (8)
C160.0249 (10)0.0219 (10)0.0233 (10)0.0024 (8)0.0097 (8)0.0006 (8)
C170.0312 (11)0.0183 (10)0.0271 (11)−0.0010 (8)0.0131 (9)−0.0003 (8)
C180.0246 (10)0.0279 (11)0.0385 (12)−0.0055 (9)0.0144 (9)−0.0022 (9)
C190.0234 (10)0.0270 (11)0.0341 (11)0.0041 (8)0.0130 (9)0.0015 (9)
C200.0336 (11)0.0204 (11)0.0328 (11)0.0040 (9)0.0137 (9)−0.0005 (9)
C210.0417 (13)0.0219 (11)0.0426 (13)0.0055 (9)0.0202 (11)0.0044 (9)

Geometric parameters (Å, °)

Cl1—C91.752 (2)C10—H10A0.9800
O1—C131.234 (2)C10—H10B0.9800
O2—C161.378 (2)C10—H10C0.9800
O2—C201.435 (2)C11—C121.331 (3)
O3—C171.377 (2)C11—H110.9500
O3—C211.444 (2)C12—C131.492 (3)
N1—C91.301 (2)C12—H120.9500
N1—C11.371 (3)C13—C141.483 (3)
C1—C21.414 (3)C14—C151.396 (3)
C1—C61.426 (3)C14—C191.398 (3)
C2—C31.364 (3)C15—C161.379 (3)
C2—H20.9500C15—H150.9500
C3—C41.421 (3)C16—C171.396 (3)
C3—H30.9500C17—C181.385 (3)
C4—C51.371 (3)C18—C191.387 (3)
C4—C101.509 (3)C18—H180.9500
C5—C61.413 (3)C19—H190.9500
C5—H50.9500C20—C211.498 (3)
C6—C71.416 (3)C20—H20A0.9900
C7—C81.379 (3)C20—H20B0.9900
C7—H70.9500C21—H21A0.9900
C8—C91.426 (3)C21—H21B0.9900
C8—C111.469 (3)
C16—O2—C20112.99 (15)C8—C11—H11116.3
C17—O3—C21113.44 (15)C11—C12—C13119.61 (19)
C9—N1—C1117.57 (16)C11—C12—H12120.2
N1—C1—C2118.71 (17)C13—C12—H12120.2
N1—C1—C6121.93 (17)O1—C13—C14120.65 (18)
C2—C1—C6119.36 (18)O1—C13—C12119.25 (18)
C3—C2—C1120.01 (18)C14—C13—C12120.09 (18)
C3—C2—H2120.0C15—C14—C19118.90 (18)
C1—C2—H2120.0C15—C14—C13117.97 (17)
C2—C3—C4121.82 (19)C19—C14—C13123.12 (17)
C2—C3—H3119.1C16—C15—C14121.01 (18)
C4—C3—H3119.1C16—C15—H15119.5
C5—C4—C3118.31 (19)C14—C15—H15119.5
C5—C4—C10122.13 (18)O2—C16—C15118.31 (17)
C3—C4—C10119.56 (18)O2—C16—C17121.94 (17)
C4—C5—C6122.10 (18)C15—C16—C17119.75 (17)
C4—C5—H5119.0O3—C17—C18118.09 (18)
C6—C5—H5119.0O3—C17—C16122.24 (17)
C5—C6—C7124.26 (18)C18—C17—C16119.67 (18)
C5—C6—C1118.38 (17)C17—C18—C19120.62 (19)
C7—C6—C1117.32 (18)C17—C18—H18119.7
C8—C7—C6121.09 (17)C19—C18—H18119.7
C8—C7—H7119.5C18—C19—C14120.00 (18)
C6—C7—H7119.5C18—C19—H19120.0
C7—C8—C9115.58 (17)C14—C19—H19120.0
C7—C8—C11123.31 (17)O2—C20—C21109.83 (16)
C9—C8—C11121.05 (18)O2—C20—H20A109.7
N1—C9—C8126.48 (19)C21—C20—H20A109.7
N1—C9—Cl1114.99 (15)O2—C20—H20B109.7
C8—C9—Cl1118.51 (15)C21—C20—H20B109.7
C4—C10—H10A109.5H20A—C20—H20B108.2
C4—C10—H10B109.5O3—C21—C20110.74 (17)
H10A—C10—H10B109.5O3—C21—H21A109.5
C4—C10—H10C109.5C20—C21—H21A109.5
H10A—C10—H10C109.5O3—C21—H21B109.5
H10B—C10—H10C109.5C20—C21—H21B109.5
C12—C11—C8127.38 (19)H21A—C21—H21B108.1
C12—C11—H11116.3
C9—N1—C1—C2−178.11 (17)C8—C11—C12—C13176.79 (18)
C9—N1—C1—C61.5 (3)C11—C12—C13—O1−14.8 (3)
N1—C1—C2—C3178.47 (18)C11—C12—C13—C14166.44 (18)
C6—C1—C2—C3−1.1 (3)O1—C13—C14—C15−8.8 (3)
C1—C2—C3—C40.3 (3)C12—C13—C14—C15169.95 (17)
C2—C3—C4—C50.9 (3)O1—C13—C14—C19170.08 (19)
C2—C3—C4—C10−178.64 (19)C12—C13—C14—C19−11.2 (3)
C3—C4—C5—C6−1.3 (3)C19—C14—C15—C161.7 (3)
C10—C4—C5—C6178.19 (18)C13—C14—C15—C16−179.44 (17)
C4—C5—C6—C7−177.15 (18)C20—O2—C16—C15162.26 (17)
C4—C5—C6—C10.5 (3)C20—O2—C16—C17−18.1 (3)
N1—C1—C6—C5−178.89 (17)C14—C15—C16—O2179.02 (17)
C2—C1—C6—C50.7 (3)C14—C15—C16—C17−0.6 (3)
N1—C1—C6—C7−1.0 (3)C21—O3—C17—C18167.52 (18)
C2—C1—C6—C7178.55 (17)C21—O3—C17—C16−12.7 (3)
C5—C6—C7—C8177.13 (18)O2—C16—C17—O3−0.9 (3)
C1—C6—C7—C8−0.6 (3)C15—C16—C17—O3178.76 (17)
C6—C7—C8—C91.6 (3)O2—C16—C17—C18178.86 (18)
C6—C7—C8—C11−175.60 (17)C15—C16—C17—C18−1.5 (3)
C1—N1—C9—C8−0.4 (3)O3—C17—C18—C19−177.65 (18)
C1—N1—C9—Cl1−178.80 (13)C16—C17—C18—C192.6 (3)
C7—C8—C9—N1−1.2 (3)C17—C18—C19—C14−1.6 (3)
C11—C8—C9—N1176.08 (18)C15—C14—C19—C18−0.6 (3)
C7—C8—C9—Cl1177.23 (14)C13—C14—C19—C18−179.41 (18)
C11—C8—C9—Cl1−5.5 (2)C16—O2—C20—C2148.1 (2)
C7—C8—C11—C12−34.3 (3)C17—O3—C21—C2043.1 (2)
C9—C8—C11—C12148.6 (2)O2—C20—C21—O3−62.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C11—H11···Cl10.952.723.036 (2)100
C11—H11···O10.952.422.769 (2)101
C2—H2···N1i0.952.573.514 (3)170
C18—H18···O2ii0.952.533.266 (3)134
C21—H21A···O1iii0.992.533.406 (3)147

Symmetry codes: (i) −x+2, −y, −z+2; (ii) x+1, y, z; (iii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2245).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bhakuni, D. S. & Chaturvedi, R. (1984). J. Nat. Prod.47, 585–591. [PubMed]
  • Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hooft, R. (1998). COLLECT Nonius B V, Delft, The Netherlands.
  • Meth-Cohn, O., Narine, B. & Tarnowski, B. (1981). J. Chem. Soc. Perkin Trans. 1, pp. 1520–1530.
  • Mishra, N., Arora, P., Kumar, B., Mishra, L. C., Bhattacharya, A., Awasthi, S. K. & Bhasin, V. K. (2008). Eur. J. Med. Chem.43, 1530–1535. [PubMed]
  • Nielsen, S. F., Larsen, M., Bosen, T., Schonning, K. & Kromann, H. (2005). J. Med. Chem.48, 2667–2677. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Rizvi, S. U. F., Siddiqui, H. L., Zia-ur-Rehman, M., Azam, M. & Parvez, M. (2010). Acta Cryst. E66, o761. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vaya, J., Belinky, P. A. & Aviram, M. (1997). Free Radic. Biol. Med.23, 302–313. [PubMed]
  • Wu, J. H., Wang, X. H., Yi, Y. H. & Lee, K. H. (2003). Bioorg. Med. Chem. Lett.13, 1813–1815. [PubMed]
  • Xia, Y., Yang, Z. Y., Xia, P., Baston, K. F., Nakanishi, Y. & Lee, K. H. (2000). Bioorg. Med. Chem. Lett.10, 699–701. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography