PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o795.
Published online 2010 March 13. doi:  10.1107/S1600536810008755
PMCID: PMC2983823

4,5-Bis(isopropyl­sulfan­yl)benzene-1,2-dicarbonitrile

Abstract

In the title compound, C14H16N2S2, the C atoms of the aromatic ring, the two cyanide groups and the two S atoms of the isopropyl­sulfanyl groups are almost coplanar [maximum deviation from the mean plane = 0.042 (7) Å]. In the crystal, inversion dimers linked by aromatic π–π stacking occur, with a centroid–centroid separation of 3.7543 (8) Å.

Related literature

For a related structure and background information on phthalocyanines, see: Zhang et al. (2009 [triangle]). For the synthesis, see: Rey et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o795-scheme1.jpg

Experimental

Crystal data

  • C14H16N2S2
  • M r = 276.41
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o795-efi1.jpg
  • a = 10.4929 (7) Å
  • b = 9.3613 (6) Å
  • c = 15.4491 (11) Å
  • β = 96.467 (1)°
  • V = 1507.87 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 298 K
  • 0.20 × 0.12 × 0.05 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.936, T max = 0.983
  • 7215 measured reflections
  • 2653 independent reflections
  • 2371 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.083
  • S = 1.05
  • 2653 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810008755/hb5352sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008755/hb5352Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Postdoctoral Scientific Foundation of China (grant No. 20070411093), the Postdoctoral Scientific Foundation of Shandong Province (grant No. 200603070) and the Independent Innovation Foundation of Shandong University, IIFSDU.

supplementary crystallographic information

Comment

As part of our ongoing studies of phthalocyanines (Zhang et al., 2009), we now report the synthesis and structure of the title compound, (I).

As shown in the Fig. 1, the aromatic carbon atoms, two nitrogen atoms and two carbon atoms of two cyanide groups, and two sulfur atoms in the substituted isopropylthio groups build the main skeleton for (I). The skeleton is almost planar with the maximum deviation from the mean plane of 0.042 (7) Å. The bond distances of cyanide groups are consistent with those in similar compounds (Zhang et al., 2009).

In the crystal, inversion dimers (–x, –y, 1–z) linked by aromatic π-π stacking occur, with a centroid-centroid separation of 3.7543 (8)Å.

Experimental

The title compound was prepared according to the literature (Rey et al., 1998) and colourless plates of (I) were recrystallized from ethanol solution.

Refinement

All H-atoms bound to carbon were refined using a riding model with distance C—H = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic atoms, C—H = 0.98 Å, Uiso = 1.2Ueq (C) for methenyl atoms, and C—H = 0.96 Å, Uiso = 1.5Ueq (C) for methyl atoms.

Figures

Fig. 1.
A view of (I) with displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C14H16N2S2F(000) = 584
Mr = 276.41Dx = 1.218 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4590 reflections
a = 10.4929 (7) Åθ = 2.5–27.4°
b = 9.3613 (6) ŵ = 0.34 mm1
c = 15.4491 (11) ÅT = 298 K
β = 96.467 (1)°Plate, colorless
V = 1507.87 (18) Å30.20 × 0.12 × 0.05 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer2653 independent reflections
Radiation source: fine-focus sealed tube2371 reflections with I > 2σ(I)
graphiteRint = 0.016
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω scansh = −12→9
Absorption correction: multi-scan (SADABS; Bruker, 2004)k = −11→11
Tmin = 0.936, Tmax = 0.983l = −17→18
7215 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0476P)2 + 0.2613P] where P = (Fo2 + 2Fc2)/3
2653 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.19579 (3)−0.17837 (4)0.39373 (3)0.05107 (14)
S20.31036 (3)0.05041 (4)0.51139 (2)0.04640 (14)
C1−0.02406 (13)0.23666 (15)0.41156 (9)0.0420 (3)
C40.10593 (12)−0.02113 (15)0.39674 (9)0.0374 (3)
C50.16133 (12)0.08841 (14)0.45253 (8)0.0362 (3)
C60.09506 (13)0.21542 (15)0.45910 (9)0.0418 (3)
H60.13070.28730.49570.050*
C3−0.01420 (13)0.00042 (16)0.35047 (9)0.0416 (3)
H3−0.0515−0.07180.31480.050*
C2−0.07884 (13)0.12884 (16)0.35707 (9)0.0408 (3)
C130.35421 (14)0.20982 (16)0.57640 (9)0.0448 (3)
H130.27800.24700.60010.054*
C7−0.08952 (15)0.37074 (18)0.41839 (11)0.0538 (4)
C140.45028 (15)0.1574 (2)0.65105 (10)0.0583 (4)
H14A0.41110.08500.68320.088*
H14B0.47620.23600.68900.088*
H14C0.52400.11840.62800.088*
N1−0.14093 (17)0.47715 (17)0.42345 (12)0.0778 (5)
C100.10888 (15)−0.29469 (16)0.31245 (10)0.0471 (4)
H100.0191−0.30130.32400.057*
C8−0.20085 (14)0.15434 (18)0.30676 (10)0.0507 (4)
N2−0.29515 (14)0.1806 (2)0.26646 (11)0.0752 (5)
C120.4102 (2)0.3253 (2)0.52361 (13)0.0714 (5)
H12A0.34710.35520.47730.107*
H12B0.48400.28870.49950.107*
H12C0.43490.40540.56050.107*
C110.1728 (2)−0.43966 (18)0.32843 (14)0.0722 (5)
H11A0.1680−0.46810.38770.108*
H11B0.2610−0.43330.31790.108*
H11C0.1296−0.50900.28980.108*
C90.1141 (2)−0.2436 (2)0.22038 (12)0.0700 (5)
H9A0.0734−0.15190.21300.105*
H9B0.0702−0.31060.18050.105*
H9C0.2019−0.23580.20910.105*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0376 (2)0.0453 (2)0.0673 (3)0.00601 (15)−0.00753 (17)−0.01699 (17)
S20.0365 (2)0.0456 (2)0.0536 (2)0.00658 (15)−0.01006 (16)−0.00971 (16)
C10.0399 (7)0.0423 (8)0.0430 (7)0.0060 (6)0.0014 (6)0.0032 (6)
C40.0323 (7)0.0402 (7)0.0398 (7)−0.0001 (5)0.0044 (5)−0.0015 (6)
C50.0315 (7)0.0403 (7)0.0363 (7)0.0011 (5)0.0020 (5)−0.0001 (5)
C60.0409 (8)0.0401 (8)0.0426 (8)0.0028 (6)−0.0031 (6)−0.0029 (6)
C30.0354 (7)0.0453 (8)0.0433 (7)−0.0034 (6)0.0005 (6)−0.0035 (6)
C20.0320 (7)0.0489 (8)0.0406 (7)0.0008 (6)0.0005 (6)0.0062 (6)
C130.0383 (7)0.0513 (9)0.0434 (8)0.0002 (6)−0.0017 (6)−0.0117 (6)
C70.0507 (9)0.0505 (9)0.0569 (9)0.0110 (7)−0.0083 (7)0.0004 (7)
C140.0425 (8)0.0797 (12)0.0499 (9)0.0037 (8)−0.0078 (7)−0.0122 (8)
N10.0790 (11)0.0594 (10)0.0895 (12)0.0271 (9)−0.0150 (9)−0.0073 (8)
C100.0425 (8)0.0420 (8)0.0561 (9)−0.0071 (6)0.0025 (6)−0.0093 (7)
C80.0384 (8)0.0609 (10)0.0513 (9)0.0004 (7)−0.0022 (7)0.0051 (7)
N20.0455 (8)0.1017 (13)0.0736 (10)0.0064 (8)−0.0150 (7)0.0103 (9)
C120.0734 (13)0.0612 (11)0.0777 (13)−0.0156 (9)0.0006 (10)0.0011 (9)
C110.0770 (13)0.0440 (10)0.0921 (14)0.0008 (9)−0.0066 (11)−0.0183 (9)
C90.0839 (13)0.0701 (12)0.0574 (10)−0.0124 (10)0.0142 (9)−0.0105 (9)

Geometric parameters (Å, °)

S1—C41.7515 (14)C7—N11.140 (2)
S1—C101.8265 (15)C14—H14A0.9600
S2—C51.7545 (13)C14—H14B0.9600
S2—C131.8284 (15)C14—H14C0.9600
C1—C61.3909 (19)C10—C91.507 (2)
C1—C21.396 (2)C10—C111.521 (2)
C1—C71.440 (2)C10—H100.9800
C4—C31.3920 (19)C8—N21.135 (2)
C4—C51.4211 (19)C12—H12A0.9600
C5—C61.3868 (19)C12—H12B0.9600
C6—H60.9300C12—H12C0.9600
C3—C21.390 (2)C11—H11A0.9600
C3—H30.9300C11—H11B0.9600
C2—C81.441 (2)C11—H11C0.9600
C13—C121.512 (2)C9—H9A0.9600
C13—C141.525 (2)C9—H9B0.9600
C13—H130.9800C9—H9C0.9600
C4—S1—C10106.90 (7)H14A—C14—H14B109.5
C5—S2—C13105.88 (7)C13—C14—H14C109.5
C6—C1—C2119.97 (13)H14A—C14—H14C109.5
C6—C1—C7119.57 (13)H14B—C14—H14C109.5
C2—C1—C7120.46 (13)C9—C10—C11111.96 (15)
C3—C4—C5119.46 (13)C9—C10—S1113.04 (11)
C3—C4—S1124.56 (11)C11—C10—S1104.09 (11)
C5—C4—S1115.97 (10)C9—C10—H10109.2
C6—C5—C4119.26 (12)C11—C10—H10109.2
C6—C5—S2124.12 (10)S1—C10—H10109.2
C4—C5—S2116.61 (10)N2—C8—C2176.87 (19)
C5—C6—C1120.80 (13)C13—C12—H12A109.5
C5—C6—H6119.6C13—C12—H12B109.5
C1—C6—H6119.6H12A—C12—H12B109.5
C2—C3—C4120.59 (13)C13—C12—H12C109.5
C2—C3—H3119.7H12A—C12—H12C109.5
C4—C3—H3119.7H12B—C12—H12C109.5
C3—C2—C1119.90 (12)C10—C11—H11A109.5
C3—C2—C8121.00 (14)C10—C11—H11B109.5
C1—C2—C8119.08 (13)H11A—C11—H11B109.5
C12—C13—C14111.97 (14)C10—C11—H11C109.5
C12—C13—S2112.10 (11)H11A—C11—H11C109.5
C14—C13—S2104.90 (11)H11B—C11—H11C109.5
C12—C13—H13109.3C10—C9—H9A109.5
C14—C13—H13109.3C10—C9—H9B109.5
S2—C13—H13109.3H9A—C9—H9B109.5
N1—C7—C1179.6 (2)C10—C9—H9C109.5
C13—C14—H14A109.5H9A—C9—H9C109.5
C13—C14—H14B109.5H9B—C9—H9C109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5352).

References

  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Rey, B., Keller, U. & Torres, T. (1998). J. Am. Chem. Soc.120, 12808–12817.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, X., Wang, W., Jiang, J. & Ni, Z. (2009). Acta Cryst. E65, o837. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography