PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o860.
Published online 2010 March 17. doi:  10.1107/S1600536810008391
PMCID: PMC2983815

(Naphthalene-1,4-di­yl)dimethyl dibenzoate

Abstract

In the title compound, C26H20O4, the complete molecule is generated by a crystallographic 2-fold axis and the naphthalene ring system is planar within 0.05 (4) Å. The dihedral angles between the –COO plane, the benzene ring and naphthalene ring system are 12.83 (3) and 12.93 (1)°, respectively. The –COO plane and the benzene ring are almost coplanar, forming a dihedral angle of 2.59 (8)°.

Related literature

For applications of related naphthalene derivatives, see: Fukuzumi et al. (1994 [triangle]); Madsen et al. (2002 [triangle]); Strey & Voss (1998 [triangle]); Tsukada et al. (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o860-scheme1.jpg

Experimental

Crystal data

  • C26H20O4
  • M r = 396.42
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o860-efi1.jpg
  • a = 3.9919 (6) Å
  • b = 60.385 (8) Å
  • c = 16.231 (2) Å
  • V = 3912.5 (9) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 296 K
  • 0.50 × 0.38 × 0.07 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.957, T max = 0.994
  • 6343 measured reflections
  • 937 independent reflections
  • 822 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.081
  • S = 1.08
  • 937 reflections
  • 136 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.10 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810008391/om2316sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008391/om2316Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Science and Technology Foundation of Zunyi City of China (No. 200723)

supplementary crystallographic information

Comment

Numerous 1,4-naphthalene derivatives have been synthesized and studied. 1,4-naphthalene derivatives are important intermediates for applications such as monomers in the preparation of polymers (Fukuzumi et al., 1994; Tsukada et al., 1994). The title compound has a 2-fold axis of symmetry passing through the long axis of napthalene (Fig. 1). The naphthalene ring system is planar within 0.05 (4)A°. The dihedral angles of the C1/O1/O2 plane, the C2—C7 ring and naphthalene ring are 12.83 (3)° and 12.93 (1)°, respectively. Molecules of the title compound are closely stacked with a repeat equal to the a-axial dimension.

Experimental

The title compound was synthesized according to the reported procedure of Strey & Voss (1998) and Madsen et al. (2002). Colourless single crystals suitable for X-ray diffraction were obtained by recrystallization from ethyl acetate.

Refinement

H atoms were positioned geometrically, with C-H = 0.93 and 0.97Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, Uiso(H)= 1.2Ueq(C). In the absence of significant anomalous scattering, Friedel opposites were merged (862 Friedel pairs).

Figures

Fig. 1.
The molecular structure of the title compound showing 30% probability displacement ellipsoids and the atomic numbering. Symmetry code: A = 1.5 -x,0.5-y, z.

Crystal data

C26H20O4F(000) = 1664
Mr = 396.42Dx = 1.346 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2 dCell parameters from 1789 reflections
a = 3.9919 (6) Åθ = 2.6–25.3°
b = 60.385 (8) ŵ = 0.09 mm1
c = 16.231 (2) ÅT = 296 K
V = 3912.5 (9) Å3Block, colourless
Z = 80.50 × 0.38 × 0.07 mm

Data collection

Bruker APEXII diffractometer937 independent reflections
Radiation source: fine-focus sealed tube822 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −4→4
Tmin = 0.957, Tmax = 0.994k = −72→72
6343 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0506P)2] where P = (Fo2 + 2Fc2)/3
937 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.10 e Å3
1 restraintΔρmin = −0.15 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.1416 (5)0.16848 (3)0.65497 (12)0.0680 (6)
O20.4250 (4)0.19760 (2)0.60506 (10)0.0507 (4)
C10.2722 (6)0.17767 (3)0.59764 (15)0.0467 (5)
C20.2903 (6)0.16879 (3)0.51236 (15)0.0452 (5)
C30.1552 (6)0.14804 (3)0.49816 (16)0.0556 (7)
H30.05160.14040.54080.067*
C40.1746 (8)0.13876 (4)0.42042 (17)0.0652 (8)
H40.08810.12470.41120.078*
C50.3209 (7)0.15021 (4)0.35675 (18)0.0655 (7)
H50.33020.14400.30440.079*
C60.4533 (7)0.17084 (4)0.37037 (17)0.0611 (7)
H60.55220.17860.32720.073*
C70.4407 (7)0.18018 (4)0.44775 (16)0.0522 (6)
H70.53280.19410.45680.063*
C80.4461 (6)0.20608 (3)0.68748 (14)0.0455 (5)
H8A0.57840.19610.72130.055*
H8B0.22360.20710.71120.055*
C90.6053 (5)0.22851 (3)0.68603 (13)0.0413 (5)
C100.6767 (5)0.23923 (3)0.76281 (14)0.0391 (5)
C110.6072 (6)0.22913 (4)0.83964 (14)0.0474 (6)
H110.51090.21510.84050.057*
C120.6774 (7)0.23935 (4)0.91223 (14)0.0537 (6)
H120.62960.23230.96180.064*
C130.6778 (6)0.23930 (4)0.61428 (14)0.0468 (6)
H130.63140.23240.56430.056*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0943 (15)0.0554 (11)0.0542 (11)−0.0234 (10)0.0100 (11)0.0017 (9)
O20.0665 (11)0.0417 (8)0.0440 (9)−0.0096 (7)0.0002 (8)−0.0032 (7)
C10.0565 (14)0.0351 (10)0.0486 (13)−0.0024 (10)−0.0037 (11)0.0034 (11)
C20.0506 (13)0.0390 (11)0.0458 (13)0.0011 (9)−0.0074 (10)0.0022 (10)
C30.0679 (17)0.0407 (12)0.0582 (17)−0.0059 (11)−0.0134 (13)0.0024 (11)
C40.087 (2)0.0445 (13)0.0640 (18)−0.0039 (13)−0.0223 (15)−0.0045 (13)
C50.084 (2)0.0592 (15)0.0538 (15)0.0109 (14)−0.0130 (14)−0.0110 (14)
C60.0730 (18)0.0615 (16)0.0488 (15)0.0047 (13)0.0000 (13)0.0010 (12)
C70.0627 (15)0.0423 (11)0.0517 (14)−0.0017 (11)−0.0027 (12)0.0001 (11)
C80.0526 (13)0.0420 (11)0.0418 (13)−0.0017 (10)−0.0006 (11)−0.0024 (11)
C90.0441 (13)0.0398 (11)0.0399 (13)0.0027 (9)−0.0010 (10)0.0006 (10)
C100.0412 (11)0.0398 (10)0.0362 (11)0.0054 (9)0.0006 (10)0.0003 (10)
C110.0558 (15)0.0422 (11)0.0442 (13)−0.0007 (10)0.0014 (12)0.0053 (11)
C120.0667 (17)0.0573 (14)0.0371 (13)0.0034 (11)0.0039 (12)0.0064 (10)
C130.0598 (14)0.0445 (11)0.0362 (12)−0.0047 (10)−0.0032 (11)−0.0040 (10)

Geometric parameters (Å, °)

O1—C11.202 (3)C7—H70.9300
O2—C11.354 (3)C8—C91.496 (3)
O2—C81.435 (3)C8—H8A0.9700
C1—C21.486 (3)C8—H8B0.9700
C2—C31.384 (3)C9—C131.365 (3)
C2—C71.390 (3)C9—C101.433 (3)
C3—C41.383 (4)C10—C111.416 (3)
C3—H30.9300C10—C10i1.426 (4)
C4—C51.374 (4)C11—C121.359 (3)
C4—H40.9300C11—H110.9300
C5—C61.371 (4)C12—C12i1.410 (5)
C5—H50.9300C12—H120.9300
C6—C71.378 (4)C13—C13i1.415 (4)
C6—H60.9300C13—H130.9300
C1—O2—C8115.25 (18)O2—C8—C9109.48 (18)
O1—C1—O2122.4 (2)O2—C8—H8A109.8
O1—C1—C2125.1 (2)C9—C8—H8A109.8
O2—C1—C2112.43 (19)O2—C8—H8B109.8
C3—C2—C7119.4 (2)C9—C8—H8B109.8
C3—C2—C1117.6 (2)H8A—C8—H8B108.2
C7—C2—C1123.03 (19)C13—C9—C10118.96 (18)
C4—C3—C2119.8 (2)C13—C9—C8122.36 (19)
C4—C3—H3120.1C10—C9—C8118.67 (18)
C2—C3—H3120.1C11—C10—C10i118.26 (12)
C5—C4—C3120.4 (2)C11—C10—C9122.17 (17)
C5—C4—H4119.8C10i—C10—C9119.57 (11)
C3—C4—H4119.8C12—C11—C10121.8 (2)
C6—C5—C4120.0 (3)C12—C11—H11119.1
C6—C5—H5120.0C10—C11—H11119.1
C4—C5—H5120.0C11—C12—C12i119.92 (13)
C5—C6—C7120.3 (3)C11—C12—H12120.0
C5—C6—H6119.8C12i—C12—H12120.0
C7—C6—H6119.8C9—C13—C13i121.47 (12)
C6—C7—C2120.1 (2)C9—C13—H13119.3
C6—C7—H7120.0C13i—C13—H13119.3
C2—C7—H7120.0
C8—O2—C1—O15.3 (3)C1—C2—C7—C6179.0 (2)
C8—O2—C1—C2−174.01 (19)C1—O2—C8—C9−177.40 (18)
O1—C1—C2—C3−2.0 (4)O2—C8—C9—C136.7 (3)
O2—C1—C2—C3177.2 (2)O2—C8—C9—C10−174.77 (18)
O1—C1—C2—C7179.2 (3)C13—C9—C10—C11179.7 (2)
O2—C1—C2—C7−1.6 (3)C8—C9—C10—C111.2 (3)
C7—C2—C3—C40.8 (4)C13—C9—C10—C10i−0.4 (3)
C1—C2—C3—C4−178.1 (2)C8—C9—C10—C10i−179.0 (2)
C2—C3—C4—C5−1.4 (4)C10i—C10—C11—C12−0.2 (4)
C3—C4—C5—C61.0 (4)C9—C10—C11—C12179.7 (2)
C4—C5—C6—C70.0 (4)C10—C11—C12—C12i0.2 (5)
C5—C6—C7—C2−0.6 (4)C10—C9—C13—C13i0.2 (4)
C3—C2—C7—C60.2 (4)C8—C9—C13—C13i178.7 (3)

Symmetry codes: (i) −x+3/2, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2316).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fukuzumi, T., Tajiri, T., Tsukada, H. & Yoshida, J. (1994). Jpn Patent JP 06 298919.
  • Madsen, P. et al. (2002). J. Med. Chem.45, 5755–5775. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Strey, K. & Voss, J. (1998). J. Chem. Res. (S.), pp. 110–111; J. Chem. Res. (M.), pp. 648–682.
  • Tsukada, H., Tajiri, T., Fukuzumi, T. & Yoshida, J. (1994). Jpn Patent JP 06 298918.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography