PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o839–o840.
Published online 2010 March 13. doi:  10.1107/S160053681000351X
PMCID: PMC2983810

1,4-Bis[4-(tert-butyl­diphenyl­silyl)buta-1,3-diyn­yl]benzene

Abstract

The title centrosymmetric mol­ecule, C46H42Si2, is composed of a central benzene ring with buta-1,3-diynyl chains at positions 1 and 4. These chains are terminated by tert-butyl­diphenyl­silyl groups, hence the molecule is dumbbell in shape. The mol­ecules are connected via C—H(...)π inter­actions in the structure, so forming an undulating two-dimensional network in the bc plane. There is also a weak π–π inter­action involving centrosymmetrically related phenyl rings with a centroid–centroid distance of 3.8359 (11) Å.

Related literature

For polyynes and acetyl­enic arrays, see: Ginsburg et al. (1995 [triangle]); Siemsen et al. (2000 [triangle]); Brandsma (1988 [triangle]). For uses and other properties of conjugated carbon–carbon triple bonds, see: Swager (2005 [triangle]); Tobe & Wakabayashi (2005 [triangle]); Höger (2005 [triangle]); Zhou et al. (1994 [triangle]); Maruyama & Kawabata (1990 [triangle]); Lee et al. (2000 [triangle]). For information on the ‘one-pot’ tandem synthesis – Corey–Fuchs reaction/Negishi coupling, see: Corey & Fuchs (1972 [triangle]); Desai & McKelvie (1962 [triangle]); King et al. (1977 [triangle]). For the crystal structure of the trimethyl­silyl analogue, see: Shi Shun et al. (2003 [triangle]). For the synthesis and crystal structure of related compounds, see: Chalifoux et al. (2009 [triangle]); Kim (2009 [triangle]); West et al. (2008 [triangle]). For a description of the Cambridge Structural Database, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o839-scheme1.jpg

Experimental

Crystal data

  • C46H42Si2
  • M r = 650.98
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o839-efi1.jpg
  • a = 8.535 (1) Å
  • b = 17.2060 (14) Å
  • c = 13.4923 (14) Å
  • β = 104.064 (9)°
  • V = 1922.0 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 173 K
  • 0.45 × 0.38 × 0.30 mm

Data collection

  • Stoe IPDS-2 diffractometer
  • Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2009 [triangle]) T min = 0.919, T max = 1.184
  • 19707 measured reflections
  • 4403 independent reflections
  • 3260 reflections with I > 2σ(I)
  • R int = 0.098

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.104
  • S = 0.96
  • 4403 reflections
  • 220 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: X-AREA (Stoe & Cie, 2009 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2009 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
C—H(...)π inter­actions (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681000351X/fb2180sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000351X/fb2180Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HSE is grateful to the XRD Application LAB, Microsystems Technology Division, Swiss Center for Electronics and Microtechnology, Neuchâtel, for access to the X-ray diffraction equipment.

supplementary crystallographic information

Comment

The unique properties of polyynes and acetylenic arrays continue to be of great interest (Ginsburg et al., 1995; Siemsen et al., 2000; Brandsma, 1988). Compounds containing conjugated carbon-carbon triple bonds are important building blocks because they can function as carbon-rich scaffolds when incorporated into organic materials (Swager, 2005; Tobe & Wakabayashi, 2005; Höger, 2005; Zhou et al., 1994). Consequently, research into the synthesis of well-defined polyynes continues to expand. The efficiency of the energy and electron transfer processes in polyyne-bridged porphyrin systems (Maruyama & Kawabata, 1990) and bis(benzocrown ether)s (Lee et al., 2000) have been examined for their potential use as molecular wires and chemosensors.

The title compound was designed as a spacer-unit in linked materials for the creation of structured, discotic mesophases. It was synthesized from tert-Butyl(4,4-dibromobut-3-en-1-ynyl)diphenylsilane using a "one-pot" tandem synthesis, consisting of a Corey-Fuchs reaction (Corey & Fuchs, 1972; Desai & McKelvie, 1962) and a Negishi coupling reaction (King et al., 1977). The synthesis and crystal structure of the trimethylsilyl analogue has been described by (Shi Shun et al., 2003), and for some other related compounds by Chalifoux et al., 2009; Kim, 2009; West et al. (2008).

The title molecule is shown in Fig. 1. The bond lengths are normal (Allen et al., 1987) and the geometrical parameters are similar to those in the centrosymmetric trimethylsilyl analogue mentioned above (Shi Shun et al., 2003). The title molecule consists of a central benzene ring to which are attached buta-1,3-diynyl chains in positions 1 and 4. These chains are terminated with tert-butyldiphenylsilyl groups. The molecule is essentially linear and shaped like a dumbbell. The centers of the benzene rings are situated on crystallographic centers of symmetry, therefore the molecule has symmetry 1.

In the crystal of the title compound symmetry related molecules are connected via C—H···π interactions, involving the H-atoms of the central aromatic ring and the silyl phenyl rings, giving rise to the formation of an undulating two-dimensional network in the bc plane (Tab. 1 and Fig. 2). Centrosymmetrically related phenyl rings (C14 - C19), are involved in a weak π–π interaction with a centroid-to-centroid distance [Cg1···Cg1i, symmetry code: (i) = 1-x, 1-y, 1-z] of 3.836 (1) Å.

Experimental

The synthesis of the title compound was carried out under a nitrogen atmosphere. To a solution of tert-butyl(4,4-dibromobut-3-en-1-ynyl)diphenylsilane (2.64 mmol in 5.0 ml of dry tetrahydrofuran) was added N-butyl lithium (3.63 ml of 1.6 M in hexane; 5.81 mmol) at 193 K. The mixture was stirred at 193 K to 233 K for 2 h. Anhydrous ZnCl2 (5.28 mmol dissolved in 5.0 ml of tetrahydrofuran) was then added and the mixture was stirred at 233 K to 293 K for 1 h. Subsequently 1,4-diiodobenzene (0.88 mmol dissolved in 5 ml of dimethylformamide) and Pd(dppf)Cl2 [dppf = 1,1'-bis(diphenylphosphino)ferrocene] (0.17 mmol dissolved in 5 ml of CH2Cl2) were added and the mixture stirred at 353 K for 24 h. The reaction mixture was then filtered over Celite (a diatomaceous earth, which is a naturally occurring, soft, siliceous sedimentray rock, used for filtration purposes) and concentrated. The crude product was purified by column chromatography (silica gel, petroleum ether:CH2Cl2 (9:1)). Colourless rod-like crystals (average size 0.8 × 0.4 × 0.3 mm) of the title compound were grown by slow evaporation of a concentrated solution in hexane at 277 K.

1H NMR, 400 MHz (CDCl3) δ 7.80 (m, 8H, Ha,a'), 7.51 (s, 4H, H2,3,5,6), 7.46-7.38 (m, 12H, Hb,b',c), 1.14 (s, 18H, C(CH3)3)) ; 13C NMR, 100 MHz (CDCl3) δ 135.7 (Ca,a'), 132.9 (C2,3,5,6), 132.5 (Car-Si), 129.9 (Cc), 128.0 (Cb,b'), 122.5 (C1,4), (91.3, 80.0, 77.3) (C12,13,14, 42,43,44), 76.34 (C11,41), 27.2 (C(CH3)3), 19.1 (C(CH3)3); HRMS (ESI, +): [M+Na]+ = 673.27201. The numbering scheme for the interpretation of the NMR spectra is given in Fig. 3.

Refinement

The H-atoms could all be located in difference electron-density maps. In the final cycles of refinement they were included in calculated positions and treated as riding atoms: C—H = 0.95 Å for H-aryl and 0.98 Å for methyl H-atoms, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.2 for aryl and k = 1.5 for methyl H-atoms.

Figures

Fig. 1.
The title molecule with the displacement ellipoids drawn at the 50% probability level [symmetry code: (i) = -x, -y+1, -z+2].
Fig. 2.
A view along the a-axis of the crystal packing of the title compound. The C—H···π interactions are represented by the H···C contacts shown as dotted cyan lines (see Tab. 1 for details).
Fig. 3.
The numbering scheme of the title compound for the interpretation of the NMR spectra.

Crystal data

C46H42Si2F(000) = 692
Mr = 650.98Dx = 1.125 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13367 reflections
a = 8.535 (1) Åθ = 2.0–29.6°
b = 17.2060 (14) ŵ = 0.12 mm1
c = 13.4923 (14) ÅT = 173 K
β = 104.064 (9)°Block, colourless
V = 1922.0 (3) Å30.45 × 0.38 × 0.30 mm
Z = 2

Data collection

Stoe IPDS-2 diffractometer4403 independent reflections
Radiation source: fine-focus sealed tube3260 reflections with I > 2σ(I)
graphiteRint = 0.098
[var phi] and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2009)h = −11→11
Tmin = 0.919, Tmax = 1.184k = −22→22
19707 measured reflectionsl = −16→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.104H-atom parameters constrained
S = 0.96w = 1/[σ2(Fo2) + (0.0586P)2] where P = (Fo2 + 2Fc2)/3
4403 reflections(Δ/σ)max = 0.001
220 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = −0.29 e Å3
81 constraints

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Si10.21188 (5)0.33985 (2)0.45574 (3)0.0274 (1)
C10.17432 (18)0.37157 (8)0.57829 (12)0.0319 (4)
C20.15087 (18)0.39564 (8)0.65764 (11)0.0304 (4)
C30.12243 (18)0.42333 (8)0.74707 (11)0.0313 (4)
C40.09221 (18)0.44715 (8)0.82412 (11)0.0312 (4)
C50.04697 (17)0.47453 (8)0.91335 (11)0.0284 (4)
C6−0.09906 (19)0.51441 (9)0.90339 (11)0.0330 (4)
C70.14561 (19)0.46019 (9)1.01075 (11)0.0331 (5)
C80.35951 (17)0.25716 (8)0.48565 (11)0.0305 (4)
C90.4176 (2)0.21781 (10)0.41082 (14)0.0442 (5)
C100.5271 (2)0.15713 (11)0.43600 (17)0.0545 (6)
C110.5821 (2)0.13405 (11)0.53583 (19)0.0556 (7)
C120.5256 (2)0.17083 (11)0.61040 (16)0.0559 (7)
C130.4161 (2)0.23146 (10)0.58596 (13)0.0397 (5)
C140.29838 (17)0.42645 (8)0.40325 (11)0.0304 (4)
C150.2355 (2)0.50019 (9)0.41244 (14)0.0423 (5)
C160.2954 (2)0.56598 (10)0.37522 (15)0.0478 (6)
C170.4212 (2)0.55952 (10)0.32833 (14)0.0458 (6)
C180.4861 (2)0.48762 (11)0.31796 (16)0.0504 (6)
C190.4256 (2)0.42169 (10)0.35525 (14)0.0420 (5)
C200.00954 (18)0.30897 (9)0.37155 (13)0.0346 (4)
C21−0.0513 (2)0.23744 (11)0.41817 (17)0.0535 (7)
C220.0254 (2)0.28984 (12)0.26356 (14)0.0521 (6)
C23−0.1143 (2)0.37500 (11)0.36436 (16)0.0518 (6)
H6−0.166500.524100.837400.0400*
H70.244600.433001.017900.0400*
H90.381000.233000.341300.0530*
H100.564400.131400.383800.0650*
H110.658300.093000.553100.0670*
H120.561900.154600.679500.0670*
H130.378700.256100.638900.0480*
H150.149300.505400.445100.0510*
H160.249700.615500.382000.0570*
H170.463200.604600.303200.0550*
H180.572400.483000.285200.0610*
H190.471800.372400.347900.0500*
H21A−0.066500.250600.485900.0800*
H21B0.028000.195400.424500.0800*
H21C−0.154400.220500.374000.0800*
H22A0.065400.335600.234100.0780*
H22B−0.080400.275000.220900.0780*
H22C0.101400.246700.266600.0780*
H23A−0.123900.388800.433100.0780*
H23B−0.219500.357800.323200.0780*
H23C−0.078300.420500.332200.0780*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Si10.0368 (2)0.0266 (2)0.0211 (2)0.0044 (2)0.0119 (2)−0.0017 (2)
C10.0410 (8)0.0295 (7)0.0284 (8)0.0031 (6)0.0144 (6)−0.0001 (6)
C20.0400 (8)0.0268 (7)0.0270 (8)0.0025 (6)0.0131 (6)0.0007 (5)
C30.0434 (8)0.0276 (7)0.0251 (7)0.0022 (6)0.0128 (6)0.0007 (5)
C40.0443 (8)0.0256 (7)0.0258 (8)0.0017 (6)0.0126 (6)0.0002 (5)
C50.0414 (8)0.0238 (6)0.0222 (7)−0.0018 (5)0.0123 (6)−0.0034 (5)
C60.0428 (8)0.0344 (8)0.0205 (7)0.0048 (6)0.0053 (6)−0.0006 (5)
C70.0385 (8)0.0343 (8)0.0274 (8)0.0069 (6)0.0099 (6)−0.0016 (6)
C80.0347 (7)0.0297 (7)0.0286 (8)0.0012 (6)0.0106 (6)−0.0017 (6)
C90.0543 (10)0.0447 (9)0.0381 (9)0.0140 (8)0.0200 (8)−0.0009 (7)
C100.0552 (10)0.0494 (10)0.0658 (13)0.0164 (9)0.0279 (10)−0.0062 (9)
C110.0427 (9)0.0473 (10)0.0738 (15)0.0183 (8)0.0083 (9)0.0025 (9)
C120.0556 (11)0.0562 (12)0.0482 (11)0.0151 (9)−0.0023 (9)0.0086 (9)
C130.0449 (8)0.0413 (9)0.0309 (8)0.0075 (7)0.0052 (7)0.0000 (7)
C140.0377 (8)0.0326 (7)0.0206 (7)0.0008 (6)0.0065 (6)−0.0013 (5)
C150.0587 (10)0.0329 (8)0.0408 (10)0.0019 (7)0.0230 (8)−0.0018 (7)
C160.0661 (11)0.0312 (8)0.0468 (11)−0.0019 (8)0.0151 (9)−0.0006 (7)
C170.0515 (10)0.0422 (9)0.0400 (10)−0.0132 (8)0.0040 (8)0.0058 (7)
C180.0444 (9)0.0535 (11)0.0583 (12)−0.0030 (8)0.0219 (9)0.0091 (9)
C190.0415 (8)0.0396 (9)0.0494 (11)0.0023 (7)0.0195 (8)0.0043 (7)
C200.0388 (8)0.0296 (7)0.0348 (8)0.0038 (6)0.0079 (6)−0.0041 (6)
C210.0524 (10)0.0420 (10)0.0671 (14)−0.0065 (8)0.0165 (10)0.0016 (9)
C220.0584 (11)0.0587 (11)0.0357 (10)−0.0017 (9)0.0049 (8)−0.0165 (8)
C230.0429 (9)0.0461 (10)0.0598 (13)0.0130 (8)−0.0001 (9)−0.0124 (9)

Geometric parameters (Å, °)

Si1—C11.8418 (16)C20—C221.532 (2)
Si1—C81.8782 (15)C20—C231.539 (2)
Si1—C141.8764 (15)C6—H60.9500
Si1—C201.8978 (17)C7—H70.9500
C1—C21.209 (2)C9—H90.9500
C2—C31.373 (2)C10—H100.9500
C3—C41.202 (2)C11—H110.9500
C4—C51.431 (2)C12—H120.9500
C5—C61.400 (2)C13—H130.9500
C5—C71.400 (2)C15—H150.9500
C6—C7i1.384 (2)C16—H160.9500
C8—C91.402 (2)C17—H170.9500
C8—C131.394 (2)C18—H180.9500
C9—C101.387 (3)C19—H190.9500
C10—C111.373 (3)C21—H21A0.9800
C11—C121.372 (3)C21—H21B0.9800
C12—C131.386 (3)C21—H21C0.9800
C14—C151.395 (2)C22—H22A0.9800
C14—C191.395 (2)C22—H22B0.9800
C15—C161.386 (2)C22—H22C0.9800
C16—C171.377 (3)C23—H23A0.9800
C17—C181.376 (3)C23—H23B0.9800
C18—C191.390 (3)C23—H23C0.9800
C20—C211.529 (3)
C1—Si1—C8106.60 (7)C6i—C7—H7120.00
C1—Si1—C14105.89 (6)C8—C9—H9119.00
C1—Si1—C20106.78 (7)C10—C9—H9119.00
C8—Si1—C14112.19 (7)C9—C10—H10120.00
C8—Si1—C20112.45 (7)C11—C10—H10120.00
C14—Si1—C20112.38 (7)C10—C11—H11120.00
Si1—C1—C2177.19 (13)C12—C11—H11120.00
C1—C2—C3179.29 (17)C11—C12—H12120.00
C2—C3—C4177.85 (17)C13—C12—H12120.00
C3—C4—C5176.80 (17)C8—C13—H13119.00
C4—C5—C6119.77 (13)C12—C13—H13119.00
C4—C5—C7120.55 (14)C14—C15—H15119.00
C6—C5—C7119.65 (14)C16—C15—H15119.00
C5—C6—C7i120.29 (14)C15—C16—H16120.00
C5—C7—C6i120.06 (15)C17—C16—H16120.00
Si1—C8—C9123.17 (12)C16—C17—H17120.00
Si1—C8—C13120.33 (12)C18—C17—H17120.00
C9—C8—C13116.50 (14)C17—C18—H18120.00
C8—C9—C10121.47 (17)C19—C18—H18120.00
C9—C10—C11120.49 (18)C14—C19—H19119.00
C10—C11—C12119.27 (18)C18—C19—H19119.00
C11—C12—C13120.65 (19)C20—C21—H21A109.00
C8—C13—C12121.63 (16)C20—C21—H21B109.00
Si1—C14—C15119.58 (12)C20—C21—H21C110.00
Si1—C14—C19123.40 (11)H21A—C21—H21B110.00
C15—C14—C19117.02 (14)H21A—C21—H21C109.00
C14—C15—C16121.81 (16)H21B—C21—H21C109.00
C15—C16—C17119.88 (16)C20—C22—H22A109.00
C16—C17—C18119.82 (16)C20—C22—H22B109.00
C17—C18—C19120.17 (17)C20—C22—H22C109.00
C14—C19—C18121.29 (16)H22A—C22—H22B109.00
Si1—C20—C21109.25 (12)H22A—C22—H22C109.00
Si1—C20—C22110.59 (11)H22B—C22—H22C109.00
Si1—C20—C23110.02 (11)C20—C23—H23A109.00
C21—C20—C22109.62 (15)C20—C23—H23B109.00
C21—C20—C23108.87 (14)C20—C23—H23C109.00
C22—C20—C23108.48 (15)H23A—C23—H23B109.00
C5—C6—H6120.00H23A—C23—H23C109.00
C7i—C6—H6120.00H23B—C23—H23C109.00
C5—C7—H7120.00
C1—Si1—C8—C9−179.84 (13)C4—C5—C6—C7i178.71 (14)
C1—Si1—C8—C130.69 (15)C7—C5—C6—C7i0.2 (2)
C14—Si1—C8—C9−64.36 (15)C4—C5—C7—C6i−178.70 (14)
C14—Si1—C8—C13116.16 (13)C6—C5—C7—C6i−0.2 (2)
C20—Si1—C8—C963.47 (15)C5—C6—C7i—C5i−0.2 (2)
C20—Si1—C8—C13−116.00 (13)Si1—C8—C9—C10179.77 (13)
C1—Si1—C14—C15−40.17 (15)C13—C8—C9—C10−0.7 (2)
C1—Si1—C14—C19139.24 (14)Si1—C8—C13—C12−179.70 (13)
C8—Si1—C14—C15−156.07 (13)C9—C8—C13—C120.8 (2)
C8—Si1—C14—C1923.34 (16)C8—C9—C10—C11−0.2 (3)
C20—Si1—C14—C1576.05 (14)C9—C10—C11—C121.1 (3)
C20—Si1—C14—C19−104.54 (14)C10—C11—C12—C13−1.0 (3)
C1—Si1—C20—C21−65.38 (13)C11—C12—C13—C80.1 (3)
C1—Si1—C20—C22173.89 (12)Si1—C14—C15—C16179.82 (14)
C1—Si1—C20—C2354.08 (13)C19—C14—C15—C160.4 (3)
C8—Si1—C20—C2151.20 (13)Si1—C14—C19—C18−179.71 (14)
C8—Si1—C20—C22−69.54 (13)C15—C14—C19—C18−0.3 (3)
C8—Si1—C20—C23170.66 (11)C14—C15—C16—C17−0.5 (3)
C14—Si1—C20—C21178.93 (11)C15—C16—C17—C180.5 (3)
C14—Si1—C20—C2258.20 (13)C16—C17—C18—C19−0.4 (3)
C14—Si1—C20—C23−61.61 (14)C17—C18—C19—C140.3 (3)

Symmetry codes: (i) −x, −y+1, −z+2.

Table 1 C—H···π interactions (Å, °)

Cg1 and Cg2 are the centroids of the C8–C13 and C14–C19 rings, respectively.

DHCentroidC—HH···CgD···CgD—H···Cg
C6H6Cg2i0.952.853.7703 (17)164
C7H7Cg1ii0.952.953.8516 (18)160

Symmetry codes (i) = -x, -y+1, -z+1; (ii) x, -y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2180).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Brandsma, L. (1988). Preparative Acetylenic Chemistry. Amsterdam: Elsevier.
  • Chalifoux, W. A., McDonald, R., Ferguson, M. J. & Tykwinski, R. R. (2009). Angew. Chem. Int. Ed.48, 7915–7919. [PubMed]
  • Corey, E. J. & Fuchs, P. L. (1972). Tetrahedron Lett.36, 3769–3772.
  • Desai, N. B. & McKelvie, N. (1962). J. Am. Chem. Soc.84, 1745–1747.
  • Ginsburg, E. J., Gorman, C. B. & Grubbs, R. H. (1995). Modern Acetylene Chemistry, edited by P. J. Stang & F. Diederich, pp. 535–383. Weinheim: Wiley-VCH.
  • Höger, S. (2005). Acetylene Chemistry: Chemistry, Biology, and Material Science, edited by F. Diederich, P. J. Stang & R. R. Tykwinski, pp. 427–449. Weinheim: Wiley-VCH.
  • Kim, S. (2009). Angew. Chem. Int. Ed.48, 7740–7743. [PubMed]
  • King, A. O., Okukado, N. & Negishi, E. I. (1977). J. Chem. Soc. Chem. Commun. pp. 683–684.
  • Lee, L.-H., Lynch, V. & Lagow, R. J. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 2805–2809.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Maruyama, K. & Kawabata, S. (1990). Bull. Chem. Soc. Jpn, 63, 170–175.
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]
  • Shi Shun, A. L. K., Chernick, E. T., Eisler, S. & Tykwinski, R. R. (2003). J. Org. Chem.68, 1339–1347. [PubMed]
  • Siemsen, P., Livingston, R. C. & Diederich, F. (2000). Angew. Chem. Int. Ed.39, 2632–2657. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (2009). X-AREA and X-RED32 Stoe & Cie GmbH, Darmstadt, Germany.
  • Swager, T. M. (2005). Acetylene Chemistry: Chemistry, Biology, and Material Science, edited by F. Diederich, P. J. Stang & R. R. Tykwinski, pp. 233–256. Weinheim: Wiley-VCH.
  • Tobe, Y. & Wakabayashi, T. (2005). Acetylene Chemistry: Chemistry, Biology, and Material Science, edited by F. Diederich, P. J. Stang & R. R. Tykwinski, pp. 387–420. Weinheim: Wiley-VCH.
  • West, K., Wang, C., Batsanov, A. S. & Bryce, M. R. (2008). Org. Biomol. Chem 6, 1934–1937. [PubMed]
  • Zhou, Q., Carroll, P. J. & Swager, T. M. (1994). J. Org. Chem.59, 1294–1301.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography