PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m402.
Published online 2010 March 13. doi:  10.1107/S1600536810009086
PMCID: PMC2983808

[(Z)-O-Ethyl N-phenyl­thio­carbamato-κS](tricyclo­hexyl­phosphine-κP)gold(I): a monoclinic polymorph

Abstract

The title compound, [Au(C9H10NOS)(C18H33P)], represents a monoclinic polymorph to complement a previously reported triclinic (P An external file that holds a picture, illustration, etc.
Object name is e-66-0m402-efi1.jpg) polymorph [Hall et al. (1993 [triangle]). Aust. J. Chem. 46, 561–570 (unit-cell data only)]. The AuI atom is coordinated within an S,P-donor set that defines a slightly distorted linear geometry [S—Au—P = = 175.43 (3)°], with the distortion due in part to a close intra­molecular Au(...)O contact [3.036 (2) Å]. In the crystal structure, mol­ecules are arranged into supra­molecular chains along the b axis mediated by C—H(...)π inter­actions.

Related literature

For the structural systematics and luminescence properties of phosphinegold(I) carbonimidothio­ates, see: Ho et al. (2006 [triangle]); Ho & Tiekink (2007 [triangle]); Kuan et al. (2008 [triangle]). For the synthesis and for unit-cell data for the triclinic polymorph, see: Hall et al. (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m402-scheme1.jpg

Experimental

Crystal data

  • [Au(C9H10NOS)(C18H33P)]
  • M r = 657.62
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m402-efi2.jpg
  • a = 16.1587 (7) Å
  • b = 9.1138 (4) Å
  • c = 18.7246 (9) Å
  • β = 90.448 (1)°
  • V = 2757.4 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 5.49 mm−1
  • T = 223 K
  • 0.39 × 0.10 × 0.07 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.328, T max = 1
  • 18648 measured reflections
  • 6309 independent reflections
  • 5468 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.057
  • S = 1.01
  • 6309 reflections
  • 290 parameters
  • H-atom parameters constrained
  • Δρmax = 0.69 e Å−3
  • Δρmin = −1.03 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810009086/hg2657sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810009086/hg2657Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The National University of Singapore (grant No. R-143–000-213–112) is thanked for support.

supplementary crystallographic information

Comment

Systematic structural studies of molecules with the general formula R3PAu[SC(OR')═NR''] for R, R' and R'' = alkyl and aryl (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008), led to the investigation of the title compound, (I).

In keeping with expectation, the gold atom in (I) exists within an SP donor set defined by the phosphine-P and thiolate-S atoms, Table 1 and Fig. 1. Confirmation that the carbonimidothioate ligand is functioning as a thiolate is found in the magnitudes of the C1—S1 and C1═N1 distances of 1.749 (3) and 1.257 (4) Å, respectively. The coordination geometry is distorted from the ideal linear [S—Au—P = 175.43 (3) °] owing to the close approach of the O1 atom, 3.036 (2) Å. The most prominent interactions in the crystal structure are of the type C–H···π, Table 2, and these lead to the formation of supramolecular chains along the b axis, Fig. 2.

Unit cell data for a triclinic (P1) of (I) have been reported but no structural details were reported owing to the highly disordered nature of the molecule (Hall et al., 1993).

Experimental

Compound (I) was prepared following the standard literature procedure from the reaction of Cy3PAuCl and EtOC(═S)N(H)Ph in the presence of NaOH (Hall et al., 1993). Crystals were obtained by the slow evaporation of a CH2Cl2/hexane (3/1) solution held at room temperature.

Refinement

The H atoms were geometrically placed (C—H = 0.94-0.99 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(C). The maximum and minimum residual electron density peaks of 0.69 and 1.03 e Å-3, respectively, were located 0.78 Å and 0.92 Å from the Au atom.

Figures

Fig. 1.
Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 35% probability level.
Fig. 2.
A view of a supramolecular chain in (I) aligned along the b axis with the C–H···π interactions shown as purple dashed lines. Colour code: Au, orange; S, yellow; P, pink; O, red; N, blue; C, grey; and H, green.

Crystal data

[Au(C9H10NOS)(C18H33P)]F(000) = 1320
Mr = 657.62Dx = 1.584 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 6662 reflections
a = 16.1587 (7) Åθ = 2.5–29.9°
b = 9.1138 (4) ŵ = 5.49 mm1
c = 18.7246 (9) ÅT = 223 K
β = 90.448 (1)°Prism, colourless
V = 2757.4 (2) Å30.39 × 0.10 × 0.07 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer6309 independent reflections
Radiation source: fine-focus sealed tube5468 reflections with I > 2σ(I)
graphiteRint = 0.045
ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −18→20
Tmin = 0.328, Tmax = 1k = −9→11
18648 measured reflectionsl = −24→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0174P)2] where P = (Fo2 + 2Fc2)/3
6309 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = −1.03 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Au0.117624 (6)0.111622 (12)0.183207 (6)0.01601 (4)
S10.03607 (5)0.02561 (9)0.27503 (5)0.02352 (18)
P10.20646 (4)0.19446 (8)0.09908 (4)0.01485 (16)
O1−0.04247 (12)0.2578 (2)0.22844 (12)0.0247 (5)
N1−0.11098 (15)0.1371 (3)0.31544 (15)0.0275 (7)
C1−0.04832 (18)0.1457 (4)0.27632 (17)0.0202 (7)
C2−0.12197 (18)0.0201 (4)0.36357 (19)0.0271 (8)
C3−0.1686 (2)−0.0999 (5)0.3430 (3)0.0497 (12)
H3−0.1876−0.10850.29560.060*
C4−0.1874 (2)−0.2076 (6)0.3926 (3)0.0658 (16)
H4−0.2181−0.29000.37820.079*
C5−0.1621 (3)−0.1962 (6)0.4617 (3)0.0577 (14)
H5−0.1765−0.26890.49500.069*
C6−0.1157 (3)−0.0787 (5)0.4826 (2)0.0533 (13)
H6−0.0974−0.07090.53020.064*
C7−0.0953 (2)0.0294 (5)0.4335 (2)0.0424 (10)
H7−0.06300.10990.44820.051*
C8−0.1138 (2)0.3525 (4)0.2245 (2)0.0387 (10)
H8A−0.12280.40060.27060.046*
H8B−0.16330.29570.21210.046*
C9−0.0966 (3)0.4645 (5)0.1680 (3)0.0651 (16)
H9A−0.04930.52340.18210.098*
H9B−0.14460.52740.16190.098*
H9C−0.08490.41530.12320.098*
C100.1927 (2)0.1200 (3)0.00840 (17)0.0206 (7)
H100.23180.03660.00560.025*
C110.2174 (2)0.2222 (4)−0.05252 (17)0.0252 (7)
H11A0.27370.2587−0.04390.030*
H11B0.18000.3068−0.05370.030*
C120.2141 (2)0.1444 (4)−0.12399 (19)0.0378 (9)
H12A0.22560.2151−0.16210.045*
H12B0.25700.0686−0.12520.045*
C130.1312 (3)0.0750 (5)−0.1373 (2)0.0545 (13)
H13A0.13310.0193−0.18200.065*
H13B0.08950.1524−0.14300.065*
C140.1053 (2)−0.0270 (4)−0.0771 (2)0.0386 (10)
H14A0.0491−0.0631−0.08640.046*
H14B0.1426−0.1118−0.07540.046*
C150.1079 (2)0.0531 (4)−0.00506 (19)0.0301 (8)
H15A0.06590.1307−0.00480.036*
H15B0.0950−0.01610.03330.036*
C160.31353 (18)0.1463 (3)0.12613 (17)0.0186 (7)
H160.32370.19250.17320.022*
C170.32012 (19)−0.0192 (3)0.13699 (18)0.0239 (7)
H17A0.3066−0.06910.09200.029*
H17B0.2796−0.05010.17260.029*
C180.4071 (2)−0.0660 (4)0.1619 (2)0.0357 (9)
H18A0.4179−0.02750.20990.043*
H18B0.4101−0.17330.16400.043*
C190.4719 (2)−0.0092 (4)0.1113 (2)0.0407 (10)
H19A0.5270−0.03530.12960.049*
H19B0.4646−0.05580.06460.049*
C200.46621 (19)0.1550 (4)0.1030 (2)0.0407 (10)
H20A0.47790.20210.14910.049*
H20B0.50800.18830.06900.049*
C210.38063 (19)0.2009 (4)0.0767 (2)0.0309 (8)
H21A0.37800.30820.07370.037*
H21B0.37110.16130.02870.037*
C220.20142 (18)0.3951 (3)0.09267 (17)0.0173 (6)
H220.23790.42750.05350.021*
C230.2312 (2)0.4662 (3)0.16227 (17)0.0226 (7)
H23A0.28900.43860.17130.027*
H23B0.19790.42970.20200.027*
C240.2244 (2)0.6331 (3)0.1587 (2)0.0300 (8)
H24A0.24130.67490.20480.036*
H24B0.26220.67030.12230.036*
C250.1374 (2)0.6827 (4)0.1411 (2)0.0346 (9)
H25A0.13630.78970.13610.041*
H25B0.10040.65570.18020.041*
C260.1068 (2)0.6113 (3)0.0713 (2)0.0356 (9)
H26A0.04920.64000.06220.043*
H26B0.14030.64650.03140.043*
C270.11259 (19)0.4447 (4)0.0756 (2)0.0288 (8)
H27A0.09470.40200.03000.035*
H27B0.07540.40890.11280.035*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Au0.01606 (7)0.01665 (7)0.01538 (7)−0.00120 (5)0.00363 (4)0.00123 (5)
S10.0197 (4)0.0271 (4)0.0238 (4)0.0031 (3)0.0081 (3)0.0092 (4)
P10.0161 (4)0.0142 (4)0.0143 (4)−0.0029 (3)0.0035 (3)0.0005 (3)
O10.0172 (11)0.0253 (12)0.0317 (14)0.0033 (10)0.0014 (9)0.0071 (11)
N10.0210 (14)0.0333 (18)0.0284 (17)0.0005 (12)0.0071 (12)0.0008 (13)
C10.0176 (15)0.0240 (17)0.0188 (17)−0.0008 (13)−0.0011 (12)−0.0015 (13)
C20.0142 (15)0.038 (2)0.029 (2)0.0067 (15)0.0108 (13)0.0069 (16)
C30.039 (2)0.066 (3)0.044 (3)−0.024 (2)−0.0044 (19)0.021 (2)
C40.037 (2)0.081 (4)0.079 (4)−0.026 (2)−0.003 (2)0.044 (3)
C50.039 (2)0.081 (4)0.053 (3)0.017 (2)0.028 (2)0.040 (3)
C60.063 (3)0.069 (3)0.028 (2)0.039 (3)0.010 (2)0.005 (2)
C70.049 (2)0.046 (3)0.032 (2)0.021 (2)0.0047 (18)−0.0040 (19)
C80.0250 (18)0.035 (2)0.056 (3)0.0094 (17)0.0031 (17)0.015 (2)
C90.038 (2)0.059 (3)0.098 (4)0.019 (2)0.013 (2)0.045 (3)
C100.0273 (17)0.0185 (16)0.0161 (17)−0.0043 (13)0.0036 (13)−0.0021 (13)
C110.0290 (17)0.0302 (19)0.0165 (17)−0.0132 (15)0.0018 (13)0.0030 (14)
C120.048 (2)0.049 (2)0.0159 (19)−0.020 (2)0.0082 (16)−0.0027 (17)
C130.060 (3)0.086 (3)0.018 (2)−0.036 (3)−0.0020 (19)−0.009 (2)
C140.035 (2)0.050 (2)0.031 (2)−0.0275 (19)0.0014 (16)−0.0104 (19)
C150.0273 (18)0.040 (2)0.0228 (19)−0.0099 (17)0.0040 (14)−0.0038 (17)
C160.0201 (15)0.0162 (16)0.0196 (17)−0.0033 (13)0.0024 (12)0.0012 (13)
C170.0241 (16)0.0191 (17)0.0284 (19)0.0005 (14)0.0006 (14)0.0052 (14)
C180.033 (2)0.032 (2)0.042 (2)0.0083 (17)0.0012 (17)0.0108 (18)
C190.0258 (19)0.044 (2)0.052 (3)0.0144 (17)0.0063 (17)0.009 (2)
C200.0159 (17)0.046 (2)0.060 (3)−0.0023 (17)0.0051 (17)0.017 (2)
C210.0236 (17)0.0274 (19)0.042 (2)−0.0009 (15)0.0054 (15)0.0130 (17)
C220.0203 (15)0.0151 (15)0.0164 (16)−0.0017 (12)0.0002 (12)0.0005 (12)
C230.0288 (17)0.0185 (17)0.0204 (18)−0.0021 (14)0.0002 (13)−0.0027 (14)
C240.048 (2)0.0155 (17)0.027 (2)−0.0046 (16)0.0011 (16)−0.0041 (14)
C250.042 (2)0.0171 (18)0.044 (2)0.0057 (16)0.0068 (18)−0.0020 (17)
C260.039 (2)0.0241 (19)0.043 (2)0.0098 (16)−0.0061 (18)0.0016 (17)
C270.0243 (17)0.0246 (18)0.037 (2)0.0051 (15)−0.0049 (15)−0.0035 (16)

Geometric parameters (Å, °)

Au—P12.2687 (8)C14—C151.534 (5)
Au—S12.3114 (8)C14—H14A0.9800
S1—C11.749 (3)C14—H14B0.9800
P1—C221.834 (3)C15—H15A0.9800
P1—C161.852 (3)C15—H15B0.9800
P1—C101.840 (3)C16—C211.515 (4)
O1—C11.363 (4)C16—C171.526 (4)
O1—C81.441 (4)C16—H160.9900
N1—C11.257 (4)C17—C181.538 (4)
N1—C21.408 (4)C17—H17A0.9800
C2—C31.382 (5)C17—H17B0.9800
C2—C71.378 (5)C18—C191.508 (5)
C3—C41.387 (5)C18—H18A0.9800
C3—H30.9400C18—H18B0.9800
C4—C51.358 (7)C19—C201.507 (5)
C4—H40.9400C19—H19A0.9800
C5—C61.362 (7)C19—H19B0.9800
C5—H50.9400C20—C211.523 (4)
C6—C71.389 (6)C20—H20A0.9800
C6—H60.9400C20—H20B0.9800
C7—H70.9400C21—H21A0.9800
C8—C91.498 (5)C21—H21B0.9800
C8—H8A0.9800C22—C231.530 (4)
C8—H8B0.9800C22—C271.536 (4)
C9—H9A0.9700C22—H220.9900
C9—H9B0.9700C23—C241.527 (4)
C9—H9C0.9700C23—H23A0.9800
C10—C151.520 (4)C23—H23B0.9800
C10—C111.528 (4)C24—C251.511 (5)
C10—H100.9900C24—H24A0.9800
C11—C121.515 (5)C24—H24B0.9800
C11—H11A0.9800C25—C261.538 (5)
C11—H11B0.9800C25—H25A0.9800
C12—C131.500 (5)C25—H25B0.9800
C12—H12A0.9800C26—C271.523 (4)
C12—H12B0.9800C26—H26A0.9800
C13—C141.523 (5)C26—H26B0.9800
C13—H13A0.9800C27—H27A0.9800
C13—H13B0.9800C27—H27B0.9800
P1—Au—S1175.43 (3)C10—C15—H15B109.5
C1—S1—Au104.30 (11)C14—C15—H15B109.5
C22—P1—C16107.15 (14)H15A—C15—H15B108.1
C22—P1—C10107.59 (14)C21—C16—C17110.9 (3)
C16—P1—C10105.70 (15)C21—C16—P1115.3 (2)
C22—P1—Au110.44 (11)C17—C16—P1109.6 (2)
C16—P1—Au109.04 (10)C21—C16—H16106.9
C10—P1—Au116.46 (10)C17—C16—H16106.9
C1—O1—C8115.0 (2)P1—C16—H16106.9
C1—N1—C2121.8 (3)C16—C17—C18112.1 (3)
N1—C1—O1119.4 (3)C16—C17—H17A109.2
N1—C1—S1126.9 (3)C18—C17—H17A109.2
O1—C1—S1113.7 (2)C16—C17—H17B109.2
C3—C2—C7118.6 (4)C18—C17—H17B109.2
C3—C2—N1119.5 (3)H17A—C17—H17B107.9
C7—C2—N1121.4 (4)C19—C18—C17110.7 (3)
C2—C3—C4119.7 (4)C19—C18—H18A109.5
C2—C3—H3120.2C17—C18—H18A109.5
C4—C3—H3120.2C19—C18—H18B109.5
C5—C4—C3121.3 (5)C17—C18—H18B109.5
C5—C4—H4119.4H18A—C18—H18B108.1
C3—C4—H4119.4C20—C19—C18111.3 (3)
C4—C5—C6119.6 (4)C20—C19—H19A109.4
C4—C5—H5120.2C18—C19—H19A109.4
C6—C5—H5120.2C20—C19—H19B109.4
C7—C6—C5120.1 (4)C18—C19—H19B109.4
C7—C6—H6120.0H19A—C19—H19B108.0
C5—C6—H6120.0C21—C20—C19111.2 (3)
C2—C7—C6120.7 (4)C21—C20—H20A109.4
C2—C7—H7119.6C19—C20—H20A109.4
C6—C7—H7119.6C21—C20—H20B109.4
O1—C8—C9107.0 (3)C19—C20—H20B109.4
O1—C8—H8A110.3H20A—C20—H20B108.0
C9—C8—H8A110.3C16—C21—C20111.4 (3)
O1—C8—H8B110.3C16—C21—H21A109.4
C9—C8—H8B110.3C20—C21—H21A109.4
H8A—C8—H8B108.6C16—C21—H21B109.4
C8—C9—H9A109.5C20—C21—H21B109.4
C8—C9—H9B109.5H21A—C21—H21B108.0
H9A—C9—H9B109.5C23—C22—C27109.9 (3)
C8—C9—H9C109.5C23—C22—P1110.7 (2)
H9A—C9—H9C109.5C27—C22—P1110.4 (2)
H9B—C9—H9C109.5C23—C22—H22108.6
C15—C10—C11111.2 (3)C27—C22—H22108.6
C15—C10—P1113.8 (2)P1—C22—H22108.6
C11—C10—P1115.7 (2)C22—C23—C24111.3 (3)
C15—C10—H10105.0C22—C23—H23A109.4
C11—C10—H10105.0C24—C23—H23A109.4
P1—C10—H10105.0C22—C23—H23B109.4
C10—C11—C12111.5 (3)C24—C23—H23B109.4
C10—C11—H11A109.3H23A—C23—H23B108.0
C12—C11—H11A109.3C25—C24—C23112.0 (3)
C10—C11—H11B109.3C25—C24—H24A109.2
C12—C11—H11B109.3C23—C24—H24A109.2
H11A—C11—H11B108.0C25—C24—H24B109.2
C13—C12—C11111.7 (3)C23—C24—H24B109.2
C13—C12—H12A109.3H24A—C24—H24B107.9
C11—C12—H12A109.3C24—C25—C26110.6 (3)
C13—C12—H12B109.3C24—C25—H25A109.5
C11—C12—H12B109.3C26—C25—H25A109.5
H12A—C12—H12B107.9C24—C25—H25B109.5
C12—C13—C14112.6 (3)C26—C25—H25B109.5
C12—C13—H13A109.1H25A—C25—H25B108.1
C14—C13—H13A109.1C27—C26—C25110.9 (3)
C12—C13—H13B109.1C27—C26—H26A109.5
C14—C13—H13B109.1C25—C26—H26A109.5
H13A—C13—H13B107.8C27—C26—H26B109.5
C15—C14—C13110.8 (3)C25—C26—H26B109.5
C15—C14—H14A109.5H26A—C26—H26B108.0
C13—C14—H14A109.5C26—C27—C22111.2 (3)
C15—C14—H14B109.5C26—C27—H27A109.4
C13—C14—H14B109.5C22—C27—H27A109.4
H14A—C14—H14B108.1C26—C27—H27B109.4
C10—C15—C14110.8 (3)C22—C27—H27B109.4
C10—C15—H15A109.5H27A—C27—H27B108.0
C14—C15—H15A109.5
P1—Au—S1—C1132.9 (4)C11—C10—C15—C1455.9 (4)
S1—Au—P1—C22−100.4 (4)P1—C10—C15—C14−171.4 (3)
S1—Au—P1—C1617.1 (4)C13—C14—C15—C10−55.1 (4)
S1—Au—P1—C10136.6 (4)C22—P1—C16—C21−57.7 (3)
C2—N1—C1—O1177.1 (3)C10—P1—C16—C2156.8 (3)
C2—N1—C1—S1−2.4 (5)Au—P1—C16—C21−177.2 (2)
C8—O1—C1—N1−3.9 (4)C22—P1—C16—C17176.4 (2)
C8—O1—C1—S1175.6 (2)C10—P1—C16—C17−69.1 (2)
Au—S1—C1—N1176.1 (3)Au—P1—C16—C1756.9 (2)
Au—S1—C1—O1−3.4 (2)C21—C16—C17—C1853.4 (4)
C1—N1—C2—C3−95.3 (4)P1—C16—C17—C18−178.2 (2)
C1—N1—C2—C792.2 (4)C16—C17—C18—C19−54.1 (4)
C7—C2—C3—C4−0.1 (6)C17—C18—C19—C2055.9 (4)
N1—C2—C3—C4−172.8 (4)C18—C19—C20—C21−57.5 (5)
C2—C3—C4—C51.3 (7)C17—C16—C21—C20−54.4 (4)
C3—C4—C5—C6−1.7 (7)P1—C16—C21—C20−179.6 (3)
C4—C5—C6—C70.8 (6)C19—C20—C21—C1656.7 (4)
C3—C2—C7—C6−0.7 (5)C16—P1—C22—C23−54.1 (3)
N1—C2—C7—C6171.9 (3)C10—P1—C22—C23−167.4 (2)
C5—C6—C7—C20.4 (6)Au—P1—C22—C2364.5 (2)
C1—O1—C8—C9−178.3 (3)C16—P1—C22—C27−175.9 (2)
C22—P1—C10—C15−105.1 (2)C10—P1—C22—C2770.8 (3)
C16—P1—C10—C15140.6 (2)Au—P1—C22—C27−57.3 (2)
Au—P1—C10—C1519.4 (3)C27—C22—C23—C24−55.8 (3)
C22—P1—C10—C1125.4 (3)P1—C22—C23—C24−177.9 (2)
C16—P1—C10—C11−88.8 (3)C22—C23—C24—C2556.1 (4)
Au—P1—C10—C11150.0 (2)C23—C24—C25—C26−55.4 (4)
C15—C10—C11—C12−55.4 (4)C24—C25—C26—C2755.8 (4)
P1—C10—C11—C12172.8 (2)C25—C26—C27—C22−57.0 (4)
C10—C11—C12—C1354.1 (4)C23—C22—C27—C2656.7 (4)
C11—C12—C13—C14−54.2 (5)P1—C22—C27—C26179.1 (3)
C12—C13—C14—C1554.5 (5)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C20—H20b···Cgi0.982.983.689 (4)130

Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2657).

References

  • Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem.46, 561–570.
  • Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem.45, 8165–8174. [PubMed]
  • Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.
  • Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography