PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o902–o903.
Published online 2010 March 24. doi:  10.1107/S1600536810009190
PMCID: PMC2983802

(6S)-2-tert-Butyl-6-[(4S,5R)-3,4-dimethyl-5-phenyloxazolidin-2-yl]phenol

Abstract

The title compound, C21H27NO2, exhibits hydrogen bonding between the phenolic H atom and the heterocyclic N atom. The absolute configuration of the mol­ecule is known from the synthetic procedure.

Related literature

For related structures and background to the use of chiral oxazolidines as templates in asymmetric synthesis, see: Agami & Couty (2004 [triangle]); Campbell et al. (2010 [triangle]); Koyanagi et al. (2010 [triangle]); Parrott & Hitchcock (2007 [triangle]); Parrott et al. (2008 [triangle]). The synthesis of the title compound is described by Parrott & Hitchcock (2007 [triangle]). The absolute configuration assignment is based on both optical activity measurements and on the known stereochemistry of the commercially obtained optically pure ephedrine from which it was prepared (Parrott & Hitchcock, 2007 [triangle]). For geometry checks using Mogul, see: Bruno et al. (2004 [triangle]). For ring puckering analysis, see: Boeyens (1978 [triangle]); Cremer & Pople (1975 [triangle]); Spek (2009 [triangle]). For a description of the Jmol toolkit for the preparation of enhanced figures, see: McMahon & Hanson (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o902-scheme1.jpg

Experimental

Crystal data

  • C21H27NO2
  • M r = 325.44
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o902-efi1.jpg
  • a = 8.3288 (8) Å
  • b = 9.8657 (9) Å
  • c = 11.4325 (11) Å
  • β = 91.667 (1)°
  • V = 939.00 (15) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 140 K
  • 0.55 × 0.27 × 0.27 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (APEX2; Bruker, 2008 [triangle]) T min = 0.687, T max = 0.746
  • 9040 measured reflections
  • 2284 independent reflections
  • 2191 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.074
  • S = 1.04
  • 2284 reflections
  • 221 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]), publCIF (McMahon & Westrip, 2008 [triangle]) and Mercury (Macrae et al., 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810009190/zl2269sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810009190/zl2269Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This material is based upon work supported by the US National Science Foundation (CHE-0348158) (to GMF) and the American Chemical Society Petroleum Research Fund (to SRH & GMF). GMF thanks Matthias Zeller of the Youngstown State University Structure & Chemical Instrumentation Facility for the data collection and useful discussions. The diffractometer was funded by NSF grant 0087210, Ohio Board of Regents grant CAP-491, and YSU.

supplementary crystallographic information

Comment

Chiral oxazolidines are useful templates for conducting asymmetric syntheses (Agami & Couty, 2004). In order to explore the utility of these compounds in the catalytic asymmetric addition of diethylzinc to aldehydes, we prepared a series of oxazolidines from (1R,2S)-ephedrine, (1S,2S)-pseudoephedrine (Parrott & Hitchcock, 2007) and (1R,2S)-norephedrine (Parrott et al., 2008). In the course of synthesizing these oxazolidines, we were able to obtain crystals suitable for X-ray crystallographic analysis.

The title compound is structurally similar to two other oxazolidines published by Koyanagi et al. (2010) and Campbell et al. (2010). Despite these structural similarities, a Mogul geometry check (Bruno et al., 2004) reveals differences between the three structures. The C2—N3—C4 angle is found to be usual in the title compound (103.0 (1)°) and in Koyanagi et al. (106.0 (1)°), but not in Campbell et al. (106.2 (1)°), even though the last two angles are not significantly different. Another angle, C5—O1—C2, considered unusual in Mogul for both Koyanagi et al. and Campbell et al. (103.9 (1)° and 103.3 (1)°, respectively) is not unusual in the title compound (108.9 (1)°). These differences could be due to the difference in substituents on the N3 position in these compounds. The methyl substituent in the title compound occupies less space than the isopropyl substituent in the other two structures, allowing for more typical bond angles in the heterocycle of the title compound.

The difference in bond angles also appears in PLATON in the ring-puckering analysis of these compounds (Spek, 2009; Cremer & Pople, 1975; Boeyens, 1978). Koyanagi et al. and Campbell et al. report O1—C2—N3—C4—C5 ring conformations close to 1E (Φ = 1.63 (17)° and -7.05 (19)°, respectively), with O1 as the flap apex, while the heterocycle conformation of the title compound is closer to an 3E conformation (Φ = 65.73 (20)°), resulting in N3 as the flap apex. Even with these differences, the distance between the hydrogen donor and acceptor in all three structures is virtually identical (2.6244 Å in the title compound compared to 2.6278 (16) Å and 2.6180 (17) Å in Koyanagi et al. and Campbell et al., respectively).

About the Jmol enhanced figure:

We are reporting three related structures containing Jmol enhanced figures, one in this paper and the other two in other papers in this Journal (Campbell et al., 2010; Koyanagi et al., 2010). The Jmol enhanced figures were created to illustrate a range of author convenience versus end user experience, ranging from a purely GUI driven experience for the author resulting in a less functional figure for the end user to a more sophisticated use of the Jmol scripting by the author resulting in a more polished and versatile figure for the end user. The buttons, check boxes and radio buttons in the three examples visually appear to be identical; however, the underlying code they execute results in significantly different overall responses by the Jmol visualizer.

The Jmol enhanced figure included with this paper required substantial author hand-coding of Jmol scripts. To generate this enhanced figure, substantial author familiarity with Jmol script coding is required and generation of the figure is significantly more time-consuming. Strictly authoring with the Jmol toolkit GUI, without text editing any code, provides a relatively quick and easy means to prepare a decent enhanced figure, and is often sufficient. For advanced users, hand-coding Jmol scripts provides a much more versatile figure for the end-user. In particular, the orientation information of the structure can be eliminated from all radio buttons, buttons, and check boxes. This becomes a major advantage when the end-user toggles the figure to rotate or changes the orientation from the location dictated in the script. When a new option is selected, the figure will only change in the areas being highlighted. Another advantage of stripping the script of lines not related to the defined option is the ability to see more than one option at a time. For instance, in this enhanced figure, the thermal ellipse color may be viewed even when the atom style is not in the ellipse mode.

Experimental

The title compound was synthesized as previously reported (Parrott & Hitchcock, 2007). Single crystals were grown by vapor diffusion of hexane into a methylene chloride solution of the title compound.

Refinement

All non-H atoms were refined anisotropically without disorder. The absolute configuration assignment is based on both optical activity measurements and on the known stereochemistry of the commercially obtained optically pure ephedrine from which it was prepared (Parrott & Hitchcock, 2007). All H atoms were initially identified through difference Fourier syntheses and then, except for the O–H hydrogen atom, removed and included in the refinement in the riding-model approximation (C–H = 0.95, 0.98, and 1.00 Å for Ar–H, CH3 and CH; Uiso(H) = 1.2Ueq(C) except for methyl groups, where Uiso(H) = 1.5Ueq(C)). The OH H atom was freely refined isotropically. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Figures

Fig. 1.
The molecular structure of the title compound with the atomic numbering scheme. The intramolecular H-bonding is denoted by the dashed line and the 3E heterocycle conformation is shown. Displacement ellipsoids are drawn at the 50% probability level and ...
Fig. 2.
The enhanced Jmol figure of the title compound. This is the third in a series of three Jmol figures intended to illustrate some versatility of the program. See also: Campbell et al. (2010); Koyanagi et al. (2010). In this Jmol, all interactive features ...

Crystal data

C21H27NO2F(000) = 352
Mr = 325.44Dx = 1.151 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5731 reflections
a = 8.3288 (8) Åθ = 2.5–3.4°
b = 9.8657 (9) ŵ = 0.07 mm1
c = 11.4325 (11) ÅT = 140 K
β = 91.667 (1)°Rod, colourless
V = 939.00 (15) Å30.55 × 0.27 × 0.27 mm
Z = 2

Data collection

Bruker SMART APEX CCD diffractometer2191 reflections with I > 2σ(I)
graphiteRint = 0.017
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan (APEX2; Bruker, 2008)h = −10→10
Tmin = 0.687, Tmax = 0.746k = −12→12
9040 measured reflectionsl = −14→14
2284 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0485P)2 + 0.090P] where P = (Fo2 + 2Fc2)/3
2284 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = −0.14 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.99692 (12)0.27815 (11)0.41600 (9)0.0248 (2)
O200.65433 (12)0.17836 (11)0.28853 (9)0.0213 (2)
N30.79655 (14)0.40974 (12)0.33736 (10)0.0202 (2)
C160.75996 (15)0.03243 (13)0.14241 (11)0.0174 (3)
C140.91785 (16)0.22492 (14)0.21866 (11)0.0185 (3)
C191.04036 (16)0.19395 (15)0.14295 (12)0.0204 (3)
H191.13540.24720.14380.025*
C20.94417 (16)0.33629 (15)0.30751 (12)0.0210 (3)
H21.02650.40160.27950.025*
C60.87041 (16)0.27789 (16)0.60254 (12)0.0233 (3)
C150.77689 (15)0.14637 (14)0.21694 (11)0.0177 (3)
C40.84147 (17)0.47509 (15)0.45020 (13)0.0241 (3)
H40.91040.55560.43420.029*
C210.61341 (16)−0.06087 (14)0.14940 (12)0.0189 (3)
C230.60832 (17)−0.12120 (14)0.27378 (12)0.0221 (3)
H23A0.515−0.18110.27910.033*
H23B0.6−0.04770.33090.033*
H23C0.7067−0.17310.29030.033*
C80.71138 (18)0.08617 (17)0.66066 (14)0.0280 (3)
H80.64690.00990.64020.034*
C220.62164 (19)−0.17981 (16)0.06338 (13)0.0273 (3)
H22A0.526−0.23680.07060.041*
H22B0.718−0.23380.08130.041*
H22C0.6261−0.1448−0.01670.041*
C170.88590 (16)0.00653 (14)0.06749 (11)0.0199 (3)
H170.8768−0.06810.01520.024*
C130.7473 (2)0.50590 (16)0.24528 (14)0.0285 (3)
H13A0.64920.55270.26790.043*
H13B0.72670.45680.17180.043*
H13C0.8330.57240.23450.043*
C90.74020 (19)0.11793 (18)0.77790 (14)0.0316 (4)
H90.69680.06290.83740.038*
C50.94712 (16)0.36461 (16)0.51019 (12)0.0242 (3)
H51.04460.40910.5460.029*
C181.02423 (16)0.08575 (15)0.06636 (12)0.0215 (3)
H181.10690.06570.01350.026*
C110.89769 (18)0.30989 (18)0.72035 (13)0.0284 (3)
H110.96120.38660.74120.034*
C240.45695 (17)0.01669 (16)0.11992 (14)0.0257 (3)
H24A0.3653−0.04520.12490.039*
H24B0.46120.05340.04040.039*
H24C0.44470.09120.17570.039*
C100.8326 (2)0.23041 (19)0.80740 (14)0.0323 (4)
H100.85160.25320.88740.039*
C120.69710 (19)0.52203 (17)0.51714 (14)0.0301 (3)
H12A0.63890.59150.47170.045*
H12B0.73330.56010.59260.045*
H12C0.62590.44480.53040.045*
C70.77616 (17)0.16510 (16)0.57324 (13)0.0244 (3)
H70.75640.14240.49340.029*
H200.680 (2)0.258 (3)0.3212 (18)0.040 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0234 (5)0.0272 (5)0.0237 (5)0.0053 (4)−0.0006 (4)−0.0053 (4)
O200.0187 (4)0.0178 (5)0.0278 (5)−0.0037 (4)0.0079 (4)−0.0053 (4)
N30.0219 (5)0.0147 (5)0.0239 (6)−0.0007 (4)0.0028 (4)−0.0002 (4)
C160.0189 (6)0.0150 (6)0.0183 (6)0.0009 (5)−0.0004 (5)0.0027 (5)
C140.0196 (6)0.0160 (6)0.0201 (6)−0.0004 (5)0.0022 (5)0.0015 (5)
C190.0175 (6)0.0212 (7)0.0227 (6)−0.0013 (5)0.0028 (5)0.0050 (5)
C20.0182 (6)0.0191 (6)0.0259 (7)−0.0040 (5)0.0032 (5)−0.0010 (5)
C60.0200 (6)0.0257 (7)0.0242 (7)0.0065 (6)−0.0015 (5)−0.0031 (6)
C150.0181 (6)0.0156 (6)0.0195 (6)0.0014 (5)0.0031 (5)0.0016 (5)
C40.0251 (7)0.0172 (6)0.0303 (7)−0.0042 (5)0.0023 (5)−0.0051 (5)
C210.0204 (6)0.0154 (6)0.0210 (6)−0.0019 (5)0.0015 (5)0.0003 (5)
C230.0251 (7)0.0179 (7)0.0236 (7)−0.0022 (5)0.0037 (5)0.0032 (5)
C80.0248 (7)0.0253 (7)0.0338 (8)0.0065 (6)−0.0008 (6)0.0030 (6)
C220.0336 (8)0.0199 (7)0.0286 (7)−0.0052 (6)0.0033 (6)−0.0057 (6)
C170.0253 (6)0.0176 (6)0.0168 (6)0.0032 (5)0.0003 (5)0.0014 (5)
C130.0336 (8)0.0194 (7)0.0328 (8)0.0022 (6)0.0040 (6)0.0046 (6)
C90.0305 (8)0.0345 (9)0.0298 (7)0.0155 (7)0.0038 (6)0.0080 (7)
C50.0196 (6)0.0255 (7)0.0275 (7)−0.0007 (6)−0.0011 (5)−0.0086 (6)
C180.0205 (6)0.0256 (7)0.0186 (6)0.0047 (6)0.0058 (5)0.0033 (5)
C110.0265 (7)0.0315 (8)0.0267 (7)0.0098 (6)−0.0050 (5)−0.0075 (6)
C240.0216 (7)0.0204 (7)0.0349 (8)−0.0012 (6)−0.0027 (5)0.0016 (6)
C100.0349 (8)0.0378 (9)0.0238 (7)0.0176 (7)−0.0036 (6)−0.0032 (7)
C120.0319 (8)0.0247 (7)0.0339 (8)0.0047 (6)0.0043 (6)−0.0062 (7)
C70.0230 (7)0.0253 (7)0.0248 (7)0.0042 (6)−0.0016 (5)−0.0021 (6)

Geometric parameters (Å, °)

O1—C21.4243 (17)C23—H23C0.98
O1—C51.4441 (17)C8—C71.388 (2)
O20—C151.3638 (15)C8—C91.391 (2)
O20—H200.90 (2)C8—H80.95
N3—C131.4667 (19)C22—H22A0.98
N3—C21.4756 (18)C22—H22B0.98
N3—C41.4805 (18)C22—H22C0.98
C16—C171.3970 (18)C17—C181.393 (2)
C16—C151.4151 (18)C17—H170.95
C16—C211.5327 (18)C13—H13A0.98
C14—C191.3911 (18)C13—H13B0.98
C14—C151.4064 (18)C13—H13C0.98
C14—C21.5081 (19)C9—C101.387 (3)
C19—C181.385 (2)C9—H90.95
C19—H190.95C5—H51
C2—H21C18—H180.95
C6—C111.396 (2)C11—C101.389 (2)
C6—C71.397 (2)C11—H110.95
C6—C51.515 (2)C24—H24A0.98
C4—C121.516 (2)C24—H24B0.98
C4—C51.548 (2)C24—H24C0.98
C4—H41C10—H100.95
C21—C221.5338 (19)C12—H12A0.98
C21—C241.540 (2)C12—H12B0.98
C21—C231.5433 (18)C12—H12C0.98
C23—H23A0.98C7—H70.95
C23—H23B0.98
C2—O1—C5108.87 (11)C21—C22—H22B109.5
C15—O20—H20106.2 (13)H22A—C22—H22B109.5
C13—N3—C2111.67 (11)C21—C22—H22C109.5
C13—N3—C4113.71 (12)H22A—C22—H22C109.5
C2—N3—C4102.96 (11)H22B—C22—H22C109.5
C17—C16—C15116.81 (12)C18—C17—C16122.63 (13)
C17—C16—C21122.37 (12)C18—C17—H17118.7
C15—C16—C21120.75 (11)C16—C17—H17118.7
C19—C14—C15119.83 (12)N3—C13—H13A109.5
C19—C14—C2118.96 (12)N3—C13—H13B109.5
C15—C14—C2121.05 (11)H13A—C13—H13B109.5
C18—C19—C14120.22 (13)N3—C13—H13C109.5
C18—C19—H19119.9H13A—C13—H13C109.5
C14—C19—H19119.9H13B—C13—H13C109.5
O1—C2—N3103.56 (10)C10—C9—C8119.59 (15)
O1—C2—C14109.16 (12)C10—C9—H9120.2
N3—C2—C14114.06 (11)C8—C9—H9120.2
O1—C2—H2110O1—C5—C6108.80 (12)
N3—C2—H2110O1—C5—C4104.91 (11)
C14—C2—H2110C6—C5—C4117.42 (11)
C11—C6—C7119.09 (14)O1—C5—H5108.5
C11—C6—C5119.00 (14)C6—C5—H5108.5
C7—C6—C5121.90 (13)C4—C5—H5108.5
O20—C15—C14120.21 (12)C19—C18—C17119.46 (12)
O20—C15—C16118.81 (12)C19—C18—H18120.3
C14—C15—C16120.97 (11)C17—C18—H18120.3
N3—C4—C12112.88 (12)C10—C11—C6120.52 (15)
N3—C4—C5101.85 (11)C10—C11—H11119.7
C12—C4—C5116.12 (13)C6—C11—H11119.7
N3—C4—H4108.5C21—C24—H24A109.5
C12—C4—H4108.5C21—C24—H24B109.5
C5—C4—H4108.5H24A—C24—H24B109.5
C16—C21—C22112.05 (11)C21—C24—H24C109.5
C16—C21—C24111.12 (11)H24A—C24—H24C109.5
C22—C21—C24107.05 (12)H24B—C24—H24C109.5
C16—C21—C23108.84 (11)C9—C10—C11120.18 (15)
C22—C21—C23107.38 (12)C9—C10—H10119.9
C24—C21—C23110.34 (11)C11—C10—H10119.9
C21—C23—H23A109.5C4—C12—H12A109.5
C21—C23—H23B109.5C4—C12—H12B109.5
H23A—C23—H23B109.5H12A—C12—H12B109.5
C21—C23—H23C109.5C4—C12—H12C109.5
H23A—C23—H23C109.5H12A—C12—H12C109.5
H23B—C23—H23C109.5H12B—C12—H12C109.5
C7—C8—C9120.51 (16)C8—C7—C6120.11 (14)
C7—C8—H8119.7C8—C7—H7119.9
C9—C8—H8119.7C6—C7—H7119.9
C21—C22—H22A109.5
C15—C14—C19—C18−0.3 (2)C17—C16—C21—C24−121.31 (14)
C2—C14—C19—C18175.24 (12)C15—C16—C21—C2461.85 (16)
C5—O1—C2—N3−29.88 (13)C17—C16—C21—C23116.99 (14)
C5—O1—C2—C14−151.74 (11)C15—C16—C21—C23−59.85 (16)
C13—N3—C2—O1164.76 (12)C15—C16—C17—C181.39 (19)
C4—N3—C2—O142.40 (13)C21—C16—C17—C18−175.57 (12)
C13—N3—C2—C14−76.72 (15)C7—C8—C9—C100.9 (2)
C4—N3—C2—C14160.91 (11)C2—O1—C5—C6132.44 (12)
C19—C14—C2—O1−95.64 (14)C2—O1—C5—C46.00 (14)
C15—C14—C2—O179.84 (15)C11—C6—C5—O1142.27 (13)
C19—C14—C2—N3149.09 (13)C7—C6—C5—O1−36.26 (17)
C15—C14—C2—N3−35.44 (17)C11—C6—C5—C4−98.86 (15)
C19—C14—C15—O20−178.14 (12)C7—C6—C5—C482.61 (17)
C2—C14—C15—O206.42 (19)N3—C4—C5—O119.92 (13)
C19—C14—C15—C162.55 (19)C12—C4—C5—O1142.96 (13)
C2—C14—C15—C16−172.88 (13)N3—C4—C5—C6−101.00 (13)
C17—C16—C15—O20177.65 (12)C12—C4—C5—C622.04 (18)
C21—C16—C15—O20−5.34 (18)C14—C19—C18—C17−1.3 (2)
C17—C16—C15—C14−3.03 (18)C16—C17—C18—C190.8 (2)
C21—C16—C15—C14173.98 (12)C7—C6—C11—C100.3 (2)
C13—N3—C4—C1276.22 (16)C5—C6—C11—C10−178.31 (13)
C2—N3—C4—C12−162.80 (12)C8—C9—C10—C11−0.8 (2)
C13—N3—C4—C5−158.56 (12)C6—C11—C10—C90.2 (2)
C2—N3—C4—C5−37.58 (13)C9—C8—C7—C6−0.4 (2)
C17—C16—C21—C22−1.61 (18)C11—C6—C7—C8−0.2 (2)
C15—C16—C21—C22−178.45 (12)C5—C6—C7—C8178.33 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O20—H20···N30.90 (2)1.79 (2)2.6244 (16)154.4 (19)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2269).

References

  • Agami, C. & Couty, F. (2004). Eur. J. Org. Chem.4, 677–685.
  • Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct.8, 317–320.
  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci.44, 2133–2144. [PubMed]
  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Campbell, I. S., Edler, K. L., Parrott, R. W., Hitchcock, S. R. & Ferrence, G. M. (2010). Acta Cryst. E66, o900–o901. [PMC free article] [PubMed]
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Koyanagi, T., Edler, K. L., Parrott, R. W., Hitchcock, S. R. & Ferrence, G. M. (2010). Acta Cryst. E66, o898–o899. [PMC free article] [PubMed]
  • Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  • McMahon, B. & Hanson, R. M. (2008). J. Appl. Cryst.41, 811–814. [PMC free article] [PubMed]
  • McMahon, B. & Westrip, S. P. (2008). Acta Cryst. A64, C161.
  • Parrott, R. W. II & Hitchcock, S. R. (2007). Tetrahedron Asymmetry, 18, 377–382.
  • Parrott, R. W. II, Hamaker, C. G. & Hitchcock, S. R. (2008). J. Heterocycl. Chem 45, 873–878.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography