PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o890.
Published online 2010 March 20. doi:  10.1107/S1600536810009955
PMCID: PMC2983797

11-(2-Oxopyrrolidin-1-ylmeth­yl)-1,2,3,4,5,6,11,11a-octa­hydro­pyrido[2,1-b]quinazolin-6-one dihydrate

Abstract

In the crystal structure of the title compound, C17H21N3O2·2H2O, water mol­ecules are mutually O—H(...)O hydrogen bonded and form infinite chains propagating along the b axis. Neighboring chains are linked by the quinazoline mol­ecules by means of O—H(...)O=C hydrogen bonds, forming a two–dimensional network.

Related literature

For general background to pyrido-quinazoline alkaloids and their structures, see: Fitzgerald et al. (1966 [triangle]); Tashkhodzhaev et al. (1995 [triangle]); Turgunov et al. (2003 [triangle]); Tozhiboev et al. (2007 [triangle]). For the synthesis of pyrido-quinazolinone derivatives, see: Shakhidoyatov (1983 [triangle]); Barakat (1998 [triangle]). For chemical modifications of pyrido-quinazoline alkaloids, see: Shakhidoyatov et al. (2007 [triangle]). For the amido­methyl­ation reaction of quinazolinone derivatives, see: Pandey et al. (2008 [triangle]); Ibragimov et al. (2004 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o890-scheme1.jpg

Experimental

Crystal data

  • C17H21N3O2·2H2O
  • M r = 335.40
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o890-efi1.jpg
  • a = 14.794 (3) Å
  • b = 7.6720 (15) Å
  • c = 15.593 (3) Å
  • β = 104.48 (3)°
  • V = 1713.6 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 300 K
  • 0.60 × 0.55 × 0.35 mm

Data collection

  • Stoe Stadi-4 four-circle diffractometer
  • 3261 measured reflections
  • 3005 independent reflections
  • 2457 reflections with I > 2σ(I)
  • 3 standard reflections every 60 min intensity decay: 1.8%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.121
  • S = 1.10
  • 3005 reflections
  • 234 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: STADI4 (Stoe & Cie, 1997 [triangle]); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP (Bruker, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810009955/bq2200sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810009955/bq2200Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study.

supplementary crystallographic information

Comment

Alkaloid pyrido-quinazoline derivatives are widespread compounds in plants (Fitzgerald et al., 1966), was elaborated simple and convenient method of synthesis (Shakhidoyatov 1983; Barakat 1998), was studied structure and modification of pyrido-quinazoline derivatives (Tashkhodzhaev et al., 1995; Turgunov et al., 2003; Shakhidoyatov et al., 2007; Tozhiboev et al., 2007).

Amidomethylation (Pandey et al., 2008; Ibragimov et al., 2004) of 1,2–dihydro derivatives tricyclic quinazolin–4–ones allows to enter in molecule alkyl group and to get the series of the new compounds. For this purpose is realized amidomethylation of 5,6,7,8,9,14–hexahydropyrido[2,1–d]quinazolin–11–one with N–methylolpyrrolidin–2–one. Concentrated sulfuric acid has chosen as a catalyst and the reaction carried out at room temperature (Figure 1).

The molecular structure of the title compound is shown in Figure 2. Quinazoline ring (with exclusion of atom C14) and N-methylolpyrrolidin-2-one ring with inclusion of atom N5 are planar and angle between plans is 77.38 (6)°. Pyrimidine ring takes conformation of sofa leaving the atom C14 from the plane of rest five atoms on 0.409 Å. The third cycle, containing piperidine ring, has conformation of chair.

In the molecule the length of C11═O1 bond (1.241 (2) Å) noticeably, but C2'═O2 bond (1.228 (2) Å) slightly elongated from generally accepted value of C═O bond (Allen et al., 1987). The elongation and planarity of valence bonds of atoms of N10 and N1' indicate conjugation of π-electronic system of carbonic group with not divided electronic pairs of corresponding nitrogen atoms, in case C11═O1 in conjugation participates additionally aromatic ring.

In asymmetric part of crystal cell there are two molecules of water and one molecule of quinazoline derivative (Figure 2). Molecules of water are connected by hydrogen bonds Ow1—H···Ow2 and Ow2—H···Ow1 and form the infinite chain along b-axis. These hydrogen bond chains are linked by hydrogen bonds of Ow1—H···O1═C10 and Ow2—H···O2═C2' forming two–dimensional network. Hydrogen bond parameters are shown in Table 1 and packing of molecules with hydrogen bonds are shown on Figure 3.

Experimental

0.606 g (3 mmol) of the compound 1 is added to 1.8 ml concentrated sulfuric acid (96%) holding temperature below than 278 K. Then under mixing is added by portion 0.351 g (3 mmol) N-methylolpyrrolidone-2 during 2.5 hours. Reactionary mixture left on night, next day to reaction mixture is added ice and neutralized by ammonia. Precipitate of compound 2 is filtered, washed with water, dried and re-crystallized from hexane, yield 0.9 g (94%).

Colorless crystals, suitable for X-ray (in the form of the prisms and with size 0.60x0.55x0.35 mm) were grown from 1:1 mixture of aqueous methanol and tetrachloromethane at room temperature, mp. 373 K.

Refinement

The hydrogen atoms of the water molecules were located from difference of Fourier synthesis, the O—H distances are between 0.84 (4) – 0.90 (3) Å. All other H atoms bonded to C atoms were placed geometrically (with C—H distances of 0.97 Å for CH2 and 0.93 Å for Car) and included in the refinement in riding motion approximation with Uĩso~=1.2U~eq~(C) [Uĩso~=1.5U~eq~(C) for methyl H atoms].

Figures

Fig. 1.
Reaction sequence for (I).
Fig. 2.
The asymmetric part of crystalline cell, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 3.
Packing view of the title compound and H-bonds networks in the crystal.

Crystal data

C17H21N3O2·2H2OF(000) = 720
Mr = 335.40Dx = 1.300 Mg m3
Monoclinic, P21/nMelting point: 373(1) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 14.794 (3) ÅCell parameters from 15 reflections
b = 7.6720 (15) Åθ = 10–20°
c = 15.593 (3) ŵ = 0.09 mm1
β = 104.48 (3)°T = 300 K
V = 1713.6 (6) Å3Prizm, yellow
Z = 40.60 × 0.55 × 0.35 mm

Data collection

Stoe Stadi-4 four-circle diffractometerRint = 0.0000
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.7°
graphiteh = −17→17
Scan width (ω) = 1.56 – 1.68, scan ratio 2θ:ω = 1.00 I(Net) and σ(I) calculated according to Blessing (1987)k = 0→9
3261 measured reflectionsl = 0→18
3009 independent reflections3 standard reflections every 60 min
2457 reflections with I > 2σ(I) intensity decay: 1.8%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121w = 1/[σ2(Fo2) + (0.0469P)2 + 0.6922P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3005 reflectionsΔρmax = 0.18 e Å3
234 parametersΔρmin = −0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0101 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.96440 (10)0.22400 (19)0.12560 (11)0.0653 (4)
O21.12720 (11)0.8019 (2)0.50954 (9)0.0681 (5)
C11.14106 (15)0.2498 (3)0.24497 (14)0.0570 (5)
H1A1.12890.15150.20910.068*
C21.22228 (16)0.2586 (3)0.31069 (15)0.0661 (6)
H2A1.26560.16840.31870.079*
C31.23851 (15)0.4034 (3)0.36460 (14)0.0613 (6)
H3A1.29270.40900.41020.074*
C41.17602 (14)0.5405 (3)0.35233 (13)0.0516 (5)
H4A1.18800.63630.39010.062*
N51.03125 (11)0.6705 (2)0.26631 (10)0.0474 (4)
C60.98631 (14)0.7776 (3)0.10982 (13)0.0512 (5)
H6A1.03850.72080.09400.061*
H6B1.00530.89490.12970.061*
C70.90303 (17)0.7853 (3)0.02918 (14)0.0649 (6)
H7A0.85420.85600.04310.078*
H7B0.92200.8403−0.01960.078*
C80.86498 (16)0.6055 (3)0.00118 (14)0.0681 (7)
H8A0.90970.5419−0.02300.082*
H8B0.80770.6163−0.04510.082*
C90.84574 (14)0.5042 (3)0.07796 (16)0.0648 (6)
H9A0.79440.55770.09660.078*
H9B0.82800.38570.05940.078*
N100.92898 (11)0.5021 (2)0.15199 (11)0.0479 (4)
C110.98688 (13)0.3641 (2)0.16491 (13)0.0465 (5)
C121.07654 (12)0.3852 (2)0.23108 (12)0.0434 (4)
C131.09506 (12)0.5358 (2)0.28358 (11)0.0413 (4)
C140.95979 (13)0.6770 (2)0.18378 (12)0.0430 (4)
H14A0.90570.73630.19610.052*
C151.03617 (14)0.8184 (2)0.32473 (12)0.0458 (4)
H15A1.00420.91650.29100.055*
H15B1.10110.85090.34800.055*
N1'0.99468 (11)0.7833 (2)0.39819 (10)0.0448 (4)
C2'1.04278 (15)0.7769 (2)0.48300 (13)0.0487 (5)
C3'0.97606 (16)0.7351 (3)0.53885 (14)0.0597 (6)
H3'A0.99290.62600.57020.072*
H3'B0.97650.82680.58180.072*
C4'0.88213 (17)0.7215 (4)0.47546 (16)0.0776 (7)
H4'A0.84030.80850.48910.093*
H4'B0.85560.60710.47940.093*
C5'0.89524 (14)0.7509 (3)0.38388 (14)0.0592 (6)
H5'A0.87650.64890.34690.071*
H5'B0.85910.85040.35590.071*
OW10.83056 (15)0.0651 (3)0.20076 (15)0.0845 (6)
HW10.863 (2)0.115 (5)0.171 (2)0.117 (12)*
HW20.8177 (19)0.149 (4)0.2346 (19)0.090 (9)*
OW20.79729 (15)0.3018 (3)0.31763 (13)0.0821 (6)
HW30.821 (2)0.270 (4)0.374 (2)0.095 (9)*
HW40.758 (2)0.386 (4)0.3106 (19)0.096 (10)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0633 (9)0.0471 (8)0.0879 (11)−0.0075 (7)0.0235 (8)−0.0212 (8)
O20.0591 (9)0.0927 (12)0.0482 (8)−0.0114 (8)0.0051 (7)−0.0047 (8)
C10.0625 (13)0.0511 (12)0.0629 (13)0.0107 (10)0.0261 (11)−0.0026 (10)
C20.0616 (13)0.0718 (15)0.0672 (14)0.0249 (12)0.0202 (11)0.0051 (12)
C30.0507 (11)0.0801 (16)0.0532 (12)0.0116 (11)0.0133 (9)0.0056 (11)
C40.0540 (11)0.0571 (12)0.0461 (10)−0.0001 (9)0.0166 (9)−0.0010 (9)
N50.0551 (9)0.0424 (9)0.0429 (8)0.0073 (7)0.0090 (7)−0.0068 (7)
C60.0621 (12)0.0437 (11)0.0499 (11)0.0016 (9)0.0180 (9)−0.0025 (9)
C70.0809 (15)0.0666 (14)0.0470 (11)0.0201 (12)0.0155 (11)0.0014 (10)
C80.0633 (14)0.0802 (16)0.0533 (12)0.0202 (12)0.0005 (10)−0.0174 (12)
C90.0429 (11)0.0660 (14)0.0793 (15)0.0003 (10)0.0036 (10)−0.0189 (12)
N100.0432 (8)0.0439 (9)0.0561 (10)−0.0027 (7)0.0117 (7)−0.0062 (7)
C110.0499 (11)0.0399 (10)0.0568 (11)−0.0041 (8)0.0262 (9)−0.0043 (9)
C120.0471 (10)0.0422 (10)0.0468 (10)0.0005 (8)0.0228 (8)0.0010 (8)
C130.0447 (10)0.0433 (10)0.0407 (9)0.0009 (8)0.0197 (8)0.0039 (8)
C140.0462 (10)0.0391 (10)0.0451 (10)0.0054 (8)0.0143 (8)−0.0067 (8)
C150.0566 (11)0.0384 (10)0.0437 (10)−0.0016 (8)0.0151 (8)−0.0027 (8)
N1'0.0491 (9)0.0459 (9)0.0403 (8)−0.0004 (7)0.0127 (7)−0.0021 (7)
C2'0.0602 (12)0.0412 (10)0.0449 (11)0.0002 (9)0.0137 (9)−0.0056 (8)
C3'0.0771 (15)0.0569 (13)0.0509 (11)0.0040 (11)0.0267 (11)0.0016 (10)
C4'0.0624 (14)0.108 (2)0.0688 (15)0.0060 (14)0.0275 (12)0.0141 (14)
C5'0.0500 (12)0.0689 (14)0.0590 (12)−0.0016 (10)0.0143 (10)0.0054 (11)
OW10.1068 (15)0.0582 (11)0.1047 (15)−0.0158 (10)0.0570 (13)−0.0134 (10)
OW20.0982 (14)0.0904 (14)0.0565 (11)0.0277 (12)0.0171 (10)−0.0008 (10)

Geometric parameters (Å, °)

O1—C111.241 (2)C9—H9A0.9700
O2—C2'1.228 (2)C9—H9B0.9700
C1—C21.372 (3)N10—C111.345 (2)
C1—C121.391 (3)N10—C141.463 (2)
C1—H1A0.9300C11—C121.472 (3)
C2—C31.377 (3)C12—C131.403 (3)
C2—H2A0.9300C14—H14A0.9800
C3—C41.382 (3)C15—N1'1.454 (2)
C3—H3A0.9300C15—H15A0.9700
C4—C131.394 (3)C15—H15B0.9700
C4—H4A0.9300N1'—C2'1.337 (2)
N5—C131.380 (2)N1'—C5'1.453 (2)
N5—C151.445 (2)C2'—C3'1.505 (3)
N5—C141.448 (2)C3'—C4'1.494 (3)
C6—C141.519 (3)C3'—H3'A0.9700
C6—C71.526 (3)C3'—H3'B0.9700
C6—H6A0.9700C4'—C5'1.505 (3)
C6—H6B0.9700C4'—H4'A0.9700
C7—C81.512 (3)C4'—H4'B0.9700
C7—H7A0.9700C5'—H5'A0.9700
C7—H7B0.9700C5'—H5'B0.9700
C8—C91.513 (4)OW1—HW10.84 (4)
C8—H8A0.9700OW1—HW20.88 (3)
C8—H8B0.9700OW2—HW30.90 (3)
C9—N101.462 (3)OW2—HW40.86 (3)
C2—C1—C12121.2 (2)C1—C12—C13119.86 (18)
C2—C1—H1A119.4C1—C12—C11119.34 (18)
C12—C1—H1A119.4C13—C12—C11120.69 (16)
C1—C2—C3118.8 (2)N5—C13—C4123.00 (17)
C1—C2—H2A120.6N5—C13—C12118.60 (16)
C3—C2—H2A120.6C4—C13—C12118.38 (17)
C2—C3—C4121.4 (2)N5—C14—N10111.47 (14)
C2—C3—H3A119.3N5—C14—C6115.00 (16)
C4—C3—H3A119.3N10—C14—C6109.06 (15)
C3—C4—C13120.2 (2)N5—C14—H14A107.0
C3—C4—H4A119.9N10—C14—H14A107.0
C13—C4—H4A119.9C6—C14—H14A107.0
C13—N5—C15122.74 (16)N5—C15—N1'112.75 (15)
C13—N5—C14120.72 (15)N5—C15—H15A109.0
C15—N5—C14116.34 (15)N1'—C15—H15A109.0
C14—C6—C7109.68 (17)N5—C15—H15B109.0
C14—C6—H6A109.7N1'—C15—H15B109.0
C7—C6—H6A109.7H15A—C15—H15B107.8
C14—C6—H6B109.7C2'—N1'—C5'114.44 (17)
C7—C6—H6B109.7C2'—N1'—C15124.13 (16)
H6A—C6—H6B108.2C5'—N1'—C15121.42 (15)
C8—C7—C6111.61 (18)O2—C2'—N1'124.92 (19)
C8—C7—H7A109.3O2—C2'—C3'126.64 (18)
C6—C7—H7A109.3N1'—C2'—C3'108.44 (18)
C8—C7—H7B109.3C4'—C3'—C2'105.55 (17)
C6—C7—H7B109.3C4'—C3'—H3'A110.6
H7A—C7—H7B108.0C2'—C3'—H3'A110.6
C7—C8—C9111.73 (18)C4'—C3'—H3'B110.6
C7—C8—H8A109.3C2'—C3'—H3'B110.6
C9—C8—H8A109.3H3'A—C3'—H3'B108.8
C7—C8—H8B109.3C3'—C4'—C5'107.34 (18)
C9—C8—H8B109.3C3'—C4'—H4'A110.2
H8A—C8—H8B107.9C5'—C4'—H4'A110.2
N10—C9—C8110.01 (18)C3'—C4'—H4'B110.2
N10—C9—H9A109.7C5'—C4'—H4'B110.2
C8—C9—H9A109.7H4'A—C4'—H4'B108.5
N10—C9—H9B109.7N1'—C5'—C4'104.21 (17)
C8—C9—H9B109.7N1'—C5'—H5'A110.9
H9A—C9—H9B108.2C4'—C5'—H5'A110.9
C11—N10—C9120.38 (16)N1'—C5'—H5'B110.9
C11—N10—C14122.58 (15)C4'—C5'—H5'B110.9
C9—N10—C14112.77 (16)H5'A—C5'—H5'B108.9
O1—C11—N10121.74 (18)HW1—OW1—HW2104 (3)
O1—C11—C12121.68 (18)HW3—OW2—HW4114 (3)
N10—C11—C12116.53 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
Ow1—Hw1···O10.84 (4)1.998 (37)2.818 (3)167 (3)
Ow1—Hw2···Ow20.88 (3)1.828 (33)2.703 (3)172 (3)
Ow2—Hw4···Ow1i0.86 (3)1.875 (34)2.733 (3)177 (3)
Ow2—Hw3···O2ii0.90 (3)1.864 (32)2.764 (3)178 (3)

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2200).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Barakat, Y. (1998). PhD dissertation, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
  • Bruker (1998). XP Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fitzgerald, J. S., Johns, S. R., Lamberton, J. A. & Redcliffe, A. H. (1966). Aust. J. Chem.1, 151–159.
  • Ibragimov, T. F., Saprykina, V. A. & Shakhidoyatov, Kh. M. (2004). VIIth Young Scientific School-Conference on Organic Chemistry, Ekaterinburg, Abstract P-81.
  • Pandey, V. K., Mukesh, Kumar, A. & Trivedi, N. (2008). Indian J. Chem. Sect. B, 47, 1910–1914.
  • Shakhidoyatov, Kh. M. (1983). Doctoral Dissertation, University of Moscow, Russia, p.124.
  • Shakhidoyatov, Kh. M., Samarov, Z. U., Mukarramov, N. I., Levkovich, M. G., Abdullaev, N. D., Tashkhodzhaev, B., Barakat, Y. & Urakov, B. A., (2007). Chem. Nat. Compd, 4, 441–449.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (1997). STADI4 and X-RED Stoe & Cie, Darmstadt, Germany.
  • Tashkhodzhaev, B., Turgunov, K. K., D’yakonov, A. L., Belova, G. A. & Shakhidoyatov, Kh. (1995). Chem. Nat. Compd, 3, 342–348.
  • Tozhiboev, A. G., Turgunov, K. K., Tashkhodzhaev, B. & Shakhidoyatov, Kh. M. (2007). Chem. Nat. Compd, 2, 184–189.
  • Turgunov, K. K., Tashkhodzhaev, B., Molchanov, L. V. & Shakhidoyatov, Kh. M. (2003). Chem. Nat. Compd, 4, 379–382.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography