PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o741.
Published online 2010 March 3. doi:  10.1107/S1600536810006756
PMCID: PMC2983795

N-Cyclo­hexyl-4-meth­yl-N-propyl­benzene­sulfonamide

Abstract

The title compound, C16H25NO2S, is a sulfonamide derivative with the substitution of propyl and cyclo­hexyl groups at the N atom. The least-squares plane through all six C atoms of the cyclo­hexyl ring forms a dihedral angle of 58.88 (12)° with the toluene ring. No hydrogen-bonding inter­actions are present in the crystal structure.

Related literature

For the synthesis and related structures, see: Haider et al. (2009 [triangle], 2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o741-scheme1.jpg

Experimental

Crystal data

  • C16H25NO2S
  • M r = 295.43
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o741-efi1.jpg
  • a = 7.8207 (5) Å
  • b = 25.2915 (16) Å
  • c = 8.3135 (6) Å
  • β = 102.411 (3)°
  • V = 1605.96 (19) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.20 mm−1
  • T = 296 K
  • 0.16 × 0.08 × 0.06 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.980, T max = 0.988
  • 12946 measured reflections
  • 3004 independent reflections
  • 1271 reflections with I > 2σ(I)
  • R int = 0.124

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062
  • wR(F 2) = 0.128
  • S = 0.90
  • 3003 reflections
  • 183 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810006756/om2321sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006756/om2321Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Commission of Pakistan for providing a grant under the project of strengthening the Materials Chemistry Laboratory at GC University Lahore, Pakistan.

supplementary crystallographic information

Comment

The title compound (I) is an analogue to the structures (II) and (III) already published by our group (Haider et al., 2009, 2010). The cyclohexyl ring adopts the chair form, and it is orientented with the least-squares plane of all six carbon atoms at the dihedral angle of 58.88 (12)° with respect to the aromatic ring. This angle compares well with the analogous angle in (III) (59.92 (6)°) but differs slightly from that found in (II) (50.13 (9)°). Likewise, in the title compound (see Fig. 2) and in (II), no hydrogen bonding interaction was observed in the structure.

Experimental

A mixture of N-cyclohexyl-4-methyl benzene sulfonamide (1.089 g, 4.3 mmol), and sodium hydride (0.21 g, 8.6 mmol) in N, N-dimethylformamide (10 ml) was stirred at room temperature for half an hour followed by addition of propyl iodode ( 8.6 mmol). Stirring was continued further for a period of three hours and the contents were poured over crushed ice. The precipitated product was isolated, washed and crystallized from methanol solution by slow evaporation.

Refinement

The C—H H-atoms were positioned gemetrically and were refined using a riding model with C–H = 0.93 Å and Uiso(H) = 1.2 Ueq for aromatic (C), with C–H = 0.97 Å and Uiso(H) = 1.2 Ueq for methylene (C), and with C–H = 0.98 Å and Uiso(H) = 1.2 Ueq for (C7). The low angle reflection (0 2 0) was omitted in the final refinement and the H-atoms for methyl (C13) were refined at two positions using the HFIX 127 command in SHELXL97 with C–H = 0.96 Å and Uiso(H) = 1.5 Ueq for (C13).

Figures

Fig. 1.
The labelled diagram of (I) with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Unit cell packing for (I).

Crystal data

C16H25NO2SF(000) = 640
Mr = 295.43Dx = 1.222 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 856 reflections
a = 7.8207 (5) Åθ = 2.6–17.1°
b = 25.2915 (16) ŵ = 0.20 mm1
c = 8.3135 (6) ÅT = 296 K
β = 102.411 (3)°Needle, colorless
V = 1605.96 (19) Å30.16 × 0.08 × 0.06 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer3004 independent reflections
Radiation source: fine-focus sealed tube1271 reflections with I > 2σ(I)
graphiteRint = 0.124
[var phi] and ω scansθmax = 25.6°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −9→9
Tmin = 0.980, Tmax = 0.988k = −30→30
12946 measured reflectionsl = −8→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 0.90w = 1/[σ2(Fo2) + (0.0333P)2 + 0.8827P] where P = (Fo2 + 2Fc2)/3
3003 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
S1−0.12769 (14)0.12574 (4)0.82665 (13)0.0507 (3)
O1−0.1615 (4)0.15917 (11)0.9551 (3)0.0687 (9)
O2−0.2485 (3)0.08478 (11)0.7610 (3)0.0626 (8)
N10.0618 (4)0.09828 (12)0.8964 (4)0.0444 (8)
C1−0.1095 (5)0.16743 (15)0.6605 (5)0.0410 (10)
C2−0.0304 (5)0.21596 (16)0.6879 (5)0.0570 (12)
H20.00790.22830.79500.068*
C3−0.0076 (5)0.24655 (16)0.5559 (6)0.0583 (12)
H30.04770.27920.57610.070*
C4−0.0647 (5)0.22991 (16)0.3951 (5)0.0475 (11)
C5−0.1461 (5)0.18147 (16)0.3710 (5)0.0510 (11)
H5−0.18800.16950.26390.061*
C6−0.1676 (5)0.14986 (15)0.5021 (5)0.0464 (11)
H6−0.22110.11700.48240.056*
C70.1201 (5)0.05534 (15)0.7993 (5)0.0479 (11)
H70.01460.03880.73370.058*
C80.2179 (5)0.01308 (14)0.9125 (5)0.0559 (12)
H8A0.14480.00020.98470.067*
H8B0.32300.02820.98040.067*
C90.2676 (6)−0.03285 (16)0.8126 (6)0.0709 (14)
H9A0.3344−0.05870.88670.085*
H9B0.1620−0.05000.75250.085*
C100.3749 (6)−0.01397 (16)0.6925 (5)0.0611 (13)
H10A0.3995−0.04360.62690.073*
H10B0.48570.00000.75310.073*
C110.2786 (6)0.02856 (18)0.5800 (5)0.0739 (14)
H11A0.17370.01370.51100.089*
H11B0.35260.04160.50890.089*
C120.2289 (6)0.07402 (16)0.6810 (5)0.0654 (13)
H12A0.33460.09080.74230.078*
H12B0.16350.10020.60730.078*
C13−0.0380 (6)0.26366 (17)0.2532 (5)0.0729 (14)
H13A0.02740.29470.29490.109*0.50
H13B−0.14970.27390.18780.109*0.50
H13C0.02540.24390.18650.109*0.50
H13D−0.09200.24700.15120.109*0.50
H13E0.08510.26780.25830.109*0.50
H13F−0.09000.29780.25970.109*0.50
C140.1931 (5)0.12873 (15)1.0130 (4)0.0508 (11)
H14A0.16500.16600.99870.061*
H14B0.30670.12330.98660.061*
C150.2050 (5)0.11426 (15)1.1910 (5)0.0560 (12)
H15A0.23650.07721.20700.067*
H15B0.09130.11911.21790.067*
C160.3390 (6)0.14751 (16)1.3061 (5)0.0729 (14)
H16A0.45100.14381.27740.109*
H16B0.34730.13591.41740.109*
H16C0.30380.18391.29650.109*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0461 (7)0.0630 (7)0.0445 (7)0.0111 (7)0.0127 (5)0.0063 (6)
O10.076 (2)0.086 (2)0.050 (2)0.0307 (17)0.0248 (16)−0.0003 (16)
O20.0441 (18)0.072 (2)0.071 (2)−0.0052 (16)0.0099 (15)0.0123 (16)
N10.042 (2)0.053 (2)0.036 (2)0.0063 (17)0.0035 (16)0.0006 (16)
C10.041 (3)0.044 (2)0.038 (3)0.005 (2)0.006 (2)−0.004 (2)
C20.067 (3)0.054 (3)0.044 (3)0.002 (2)−0.002 (2)−0.013 (2)
C30.066 (3)0.042 (3)0.061 (3)−0.007 (2)0.002 (3)−0.002 (2)
C40.042 (3)0.051 (3)0.048 (3)0.006 (2)0.007 (2)0.007 (2)
C50.059 (3)0.054 (3)0.036 (3)0.003 (2)0.002 (2)−0.001 (2)
C60.047 (3)0.044 (2)0.045 (3)−0.005 (2)0.004 (2)−0.004 (2)
C70.044 (3)0.060 (3)0.041 (3)0.004 (2)0.010 (2)0.000 (2)
C80.063 (3)0.053 (3)0.058 (3)0.004 (2)0.027 (2)0.013 (2)
C90.073 (4)0.052 (3)0.097 (4)0.005 (3)0.040 (3)0.000 (3)
C100.056 (3)0.058 (3)0.073 (3)0.002 (2)0.024 (3)−0.009 (2)
C110.070 (4)0.100 (4)0.057 (3)0.019 (3)0.026 (3)0.002 (3)
C120.072 (3)0.073 (3)0.058 (3)0.026 (3)0.028 (3)0.023 (2)
C130.074 (3)0.075 (3)0.070 (3)−0.007 (3)0.016 (3)0.016 (3)
C140.052 (3)0.054 (3)0.046 (3)0.006 (2)0.007 (2)0.004 (2)
C150.060 (3)0.064 (3)0.043 (3)−0.003 (2)0.008 (2)0.002 (2)
C160.089 (4)0.075 (3)0.048 (3)−0.011 (3)−0.001 (3)0.004 (2)

Geometric parameters (Å, °)

S1—O21.429 (3)C9—H9B0.9700
S1—O11.430 (3)C10—C111.516 (5)
S1—N11.627 (3)C10—H10A0.9700
S1—C11.767 (4)C10—H10B0.9700
N1—C141.469 (4)C11—C121.522 (5)
N1—C71.482 (4)C11—H11A0.9700
C1—C21.371 (5)C11—H11B0.9700
C1—C61.372 (5)C12—H12A0.9700
C2—C31.385 (5)C12—H12B0.9700
C2—H20.9300C13—H13A0.9600
C3—C41.381 (5)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
C4—C51.375 (5)C13—H13D0.9600
C4—C131.507 (5)C13—H13E0.9600
C5—C61.391 (5)C13—H13F0.9600
C5—H50.9300C14—C151.507 (5)
C6—H60.9300C14—H14A0.9700
C7—C121.508 (5)C14—H14B0.9700
C7—C81.518 (5)C15—C161.513 (5)
C7—H70.9800C15—H15A0.9700
C8—C91.526 (5)C15—H15B0.9700
C8—H8A0.9700C16—H16A0.9600
C8—H8B0.9700C16—H16B0.9600
C9—C101.513 (5)C16—H16C0.9600
C9—H9A0.9700
O2—S1—O1120.02 (18)C10—C11—C12110.3 (4)
O2—S1—N1107.69 (17)C10—C11—H11A109.6
O1—S1—N1106.65 (17)C12—C11—H11A109.6
O2—S1—C1106.95 (18)C10—C11—H11B109.6
O1—S1—C1106.83 (18)C12—C11—H11B109.6
N1—S1—C1108.25 (16)H11A—C11—H11B108.1
C14—N1—C7119.4 (3)C7—C12—C11111.7 (4)
C14—N1—S1117.7 (2)C7—C12—H12A109.3
C7—N1—S1118.8 (3)C11—C12—H12A109.3
C2—C1—C6119.6 (4)C7—C12—H12B109.3
C2—C1—S1120.9 (3)C11—C12—H12B109.3
C6—C1—S1119.4 (3)H12A—C12—H12B107.9
C1—C2—C3119.9 (4)C4—C13—H13A109.5
C1—C2—H2120.0C4—C13—H13B109.5
C3—C2—H2120.0H13A—C13—H13B109.5
C4—C3—C2121.8 (4)C4—C13—H13C109.5
C4—C3—H3119.1H13A—C13—H13C109.5
C2—C3—H3119.1H13B—C13—H13C109.5
C5—C4—C3117.1 (4)C4—C13—H13D109.5
C5—C4—C13121.9 (4)H13A—C13—H13D141.1
C3—C4—C13121.0 (4)H13B—C13—H13D56.3
C4—C5—C6121.8 (4)H13C—C13—H13D56.3
C4—C5—H5119.1C4—C13—H13E109.5
C6—C5—H5119.1H13A—C13—H13E56.3
C1—C6—C5119.7 (4)H13B—C13—H13E141.1
C1—C6—H6120.1H13C—C13—H13E56.3
C5—C6—H6120.1H13D—C13—H13E109.5
N1—C7—C12114.1 (3)C4—C13—H13F109.5
N1—C7—C8110.6 (3)H13A—C13—H13F56.3
C12—C7—C8110.2 (3)H13B—C13—H13F56.3
N1—C7—H7107.2H13C—C13—H13F141.1
C12—C7—H7107.2H13D—C13—H13F109.5
C8—C7—H7107.2H13E—C13—H13F109.5
C7—C8—C9110.6 (3)N1—C14—C15114.1 (3)
C7—C8—H8A109.5N1—C14—H14A108.7
C9—C8—H8A109.5C15—C14—H14A108.7
C7—C8—H8B109.5N1—C14—H14B108.7
C9—C8—H8B109.5C15—C14—H14B108.7
H8A—C8—H8B108.1H14A—C14—H14B107.6
C10—C9—C8111.2 (3)C14—C15—C16112.0 (3)
C10—C9—H9A109.4C14—C15—H15A109.2
C8—C9—H9A109.4C16—C15—H15A109.2
C10—C9—H9B109.4C14—C15—H15B109.2
C8—C9—H9B109.4C16—C15—H15B109.2
H9A—C9—H9B108.0H15A—C15—H15B107.9
C9—C10—C11111.0 (3)C15—C16—H16A109.5
C9—C10—H10A109.4C15—C16—H16B109.5
C11—C10—H10A109.4H16A—C16—H16B109.5
C9—C10—H10B109.4C15—C16—H16C109.5
C11—C10—H10B109.4H16A—C16—H16C109.5
H10A—C10—H10B108.0H16B—C16—H16C109.5
O2—S1—N1—C14−161.9 (3)C2—C1—C6—C5−0.2 (6)
O1—S1—N1—C14−31.8 (3)S1—C1—C6—C5−177.0 (3)
C1—S1—N1—C1482.8 (3)C4—C5—C6—C11.2 (6)
O2—S1—N1—C741.0 (3)C14—N1—C7—C12−64.2 (5)
O1—S1—N1—C7171.1 (3)S1—N1—C7—C1292.5 (4)
C1—S1—N1—C7−74.3 (3)C14—N1—C7—C860.7 (4)
O2—S1—C1—C2167.1 (3)S1—N1—C7—C8−142.6 (3)
O1—S1—C1—C237.4 (4)N1—C7—C8—C9176.3 (3)
N1—S1—C1—C2−77.1 (3)C12—C7—C8—C9−56.6 (5)
O2—S1—C1—C6−16.1 (3)C7—C8—C9—C1056.6 (5)
O1—S1—C1—C6−145.8 (3)C8—C9—C10—C11−56.2 (5)
N1—S1—C1—C699.7 (3)C9—C10—C11—C1255.7 (5)
C6—C1—C2—C3−0.9 (6)N1—C7—C12—C11−177.7 (3)
S1—C1—C2—C3175.9 (3)C8—C7—C12—C1157.2 (5)
C1—C2—C3—C40.9 (6)C10—C11—C12—C7−56.7 (5)
C2—C3—C4—C50.1 (6)C7—N1—C14—C15−104.2 (4)
C2—C3—C4—C13−179.7 (4)S1—N1—C14—C1598.8 (3)
C3—C4—C5—C6−1.2 (6)N1—C14—C15—C16−178.8 (3)
C13—C4—C5—C6178.7 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2321).

References

  • Bruker (2007). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Haider, Z., Arshad, M. N., Simpson, J., Khan, I. U. & Shafiq, M. (2010). Acta Cryst. E66, o102. [PMC free article] [PubMed]
  • Haider, Z., Khan, I. U., Zia-ur-Rehman, M. & Arshad, M. N. (2009). Acta Cryst. E65, o3165. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography