PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o952.
Published online 2010 March 27. doi:  10.1107/S1600536810010500
PMCID: PMC2983794

4-Hydr­oxy-3-(1′-methyl-2-oxo-4′-phenyl­spiro­[indoline-3,2′-pyrrolidine]-3′-yl­carbon­yl)quinolin-2(1H)-one

Abstract

In the title compound, C28H23N3O4, the dihedral angle between the quinoline and indole ring systems is 29.30 (5)°. The pyrrolidine ring adopts a twist conformation. An intra­molecular O—H(...)O hydrogen bond generates an S(6) ring motif. A weak intra­molecular C3—H3(...)O3 inter­action is also observed. In the crystal, mol­ecules are linked by two sets of N—H(...)O hydrogen bonds, forming centrosymmetric dimers containing two R 2 2(8) ring motifs. The dimers are linked via C—H(...)π inter­actions.

Related literature

For general background to indole, quinoline and pyrrolidine derivatives, see: Amalraj et al. (2003 [triangle]); Cordell (1981 [triangle]); Suzuki et al. (1994 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]). For asymmetry parameters, see: Nardelli (1983 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o952-scheme1.jpg

Experimental

Crystal data

  • C28H23N3O4
  • M r = 465.49
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o952-efi1.jpg
  • a = 9.6918 (3) Å
  • b = 11.0258 (3) Å
  • c = 12.9663 (4) Å
  • α = 69.111 (1)°
  • β = 72.044 (2)°
  • γ = 66.410 (1)°
  • V = 1163.93 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2008 [triangle]) T min = 0.982, T max = 0.982
  • 21655 measured reflections
  • 5795 independent reflections
  • 4635 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.119
  • S = 1.03
  • 5795 reflections
  • 329 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810010500/ci5061sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010500/ci5061Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Substituted pyrrolidine compounds possess antimicrobial and antifungal activities against various pathogens (Amalraj et al., 2003). Several optically active pyrrolidine compounds are used as intermediates in controlled asymmetric synthesis (Suzuki et al., 1994). The spiro- indole-pyrrolidine ring system is a frequently encountered structural motif in many biologically important and pharmacologically relevant alkaloids, e.g. vincrinstine, vinblastine and spirotypostatins (Cordell, 1981). Against this background and to ascertain the detailed information on its molecular conformation, the X-ray structure determination of the title compound has been carried out.

The pyrrolidine ring (N1/C2-C5) in the molecule adopts a twist conformation. The puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) for this ring are q2 = 0.426 (1) Å, [var phi] = 335.5 (2)° and Δ2(C3) = 6.8 (2)°. The sum of the bond angles around atom N1 (337.3°) of the pyrrolidine ring indicates sp3 hybridization. The indole and quinoline ring systems are planar and keto atoms O1 and O3 deviate from the attached ring system by 0.011 (1) and -0.122 (1) Å, respectively. The dihedral angle between the indole and quinoline ring systems is 29.30 (5)°. An intramolecular O4—H4···O2 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). A weak intramolecular C3—H3···O3 interaction is also observed.

The molecules at (x, y, z) and (-x, 2-y, -z) are linked by two sets of N8—H8···O3 and N18—H18···O1 hydrogen bonds to form a centrosymmetric dimer containing two R22(8) ring motifs (Fig. 2).

Experimental

A mixture of 3-cinnamoyl-4-hydroxyquinolin-2(1H)-one (0.5 mmol), isatin (0.5 mmol) and sarcosine (0.55 mmol) was refluxed in methanol until the disappearance of the starting materials as evidenced by the TLC. After completion of the reaction, the solvent was removed in vacuo and the residue was chromatographed on silica gel using hexane-ethyl acetate mixture (7:3) as eluent to give the title compound. The compound was recrystallized in DMF-methanol (3:7 v/v).

Refinement

N- and O-bound H atoms were located in a difference map and refined isotropically. C-bound H atoms were positioned geometrically (C–H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at the 50% probability level. The dashed line indicates a hydrogen bond.
Fig. 2.
The crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Crystal data

C28H23N3O4Z = 2
Mr = 465.49F(000) = 488
Triclinic, P1Dx = 1.328 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6918 (3) ÅCell parameters from 1865 reflections
b = 11.0258 (3) Åθ = 1.7–28.4°
c = 12.9663 (4) ŵ = 0.09 mm1
α = 69.111 (1)°T = 293 K
β = 72.044 (2)°Block, colourless
γ = 66.410 (1)°0.20 × 0.20 × 0.20 mm
V = 1163.93 (6) Å3

Data collection

Bruker SMART APEXII area-detector diffractometer5795 independent reflections
Radiation source: fine-focus sealed tube4635 reflections with I > 2σ(I)
graphiteRint = 0.023
ω and [var phi] scansθmax = 28.4°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2008)h = −12→12
Tmin = 0.982, Tmax = 0.982k = −14→14
21655 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0596P)2 + 0.2023P] where P = (Fo2 + 2Fc2)/3
5795 reflections(Δ/σ)max = 0.008
329 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.12393 (11)0.84110 (9)0.20477 (8)0.0513 (2)
O20.31591 (12)0.88012 (10)0.35337 (8)0.0540 (2)
O30.17428 (11)0.93755 (10)0.06203 (7)0.0489 (2)
O40.43677 (12)1.06028 (12)0.24273 (9)0.0577 (3)
N1−0.11028 (12)0.89412 (11)0.41897 (8)0.0438 (2)
C2−0.03598 (13)0.94481 (12)0.30309 (9)0.0377 (2)
C30.13212 (13)0.83758 (11)0.29618 (9)0.0362 (2)
H30.15340.79890.23340.043*
C40.12577 (14)0.72173 (12)0.40670 (9)0.0398 (3)
H40.16350.73800.46090.048*
C5−0.04598 (15)0.74471 (13)0.44758 (10)0.0451 (3)
H5A−0.08280.70670.40860.054*
H5B−0.07020.70470.52800.054*
C6−0.27726 (17)0.95032 (17)0.44161 (13)0.0608 (4)
H6A−0.31750.92230.39810.091*
H6B−0.30851.04880.42140.091*
H6C−0.31590.91700.52020.091*
C7−0.10803 (14)0.94192 (12)0.21255 (9)0.0405 (3)
N8−0.15228 (13)1.07050 (11)0.14433 (9)0.0465 (3)
C9−0.11390 (14)1.16162 (12)0.17404 (10)0.0437 (3)
C10−0.13151 (19)1.29824 (14)0.12047 (13)0.0604 (4)
H10−0.17051.34160.05460.072*
C11−0.0888 (2)1.36838 (15)0.16859 (15)0.0669 (4)
H11−0.09701.46000.13320.080*
C12−0.03449 (19)1.30537 (14)0.26777 (14)0.0594 (4)
H12−0.01031.35590.29970.071*
C13−0.01539 (15)1.16707 (13)0.32065 (11)0.0480 (3)
H130.02161.12430.38740.058*
C14−0.05276 (14)1.09499 (12)0.27148 (9)0.0395 (2)
C150.25320 (13)0.90191 (11)0.27531 (9)0.0378 (2)
C160.29296 (13)0.99495 (11)0.16590 (9)0.0363 (2)
C170.24039 (13)1.01026 (11)0.06679 (9)0.0377 (2)
N180.26902 (12)1.11132 (10)−0.02685 (8)0.0419 (2)
C190.34942 (13)1.19400 (12)−0.03571 (10)0.0408 (3)
C200.37500 (16)1.29242 (13)−0.13735 (12)0.0515 (3)
H200.33611.3035−0.19860.062*
C210.45814 (18)1.37192 (15)−0.14509 (13)0.0597 (4)
H210.47561.4372−0.21220.072*
C220.51668 (19)1.35655 (16)−0.05436 (14)0.0624 (4)
H220.57251.4117−0.06130.075*
C230.49284 (16)1.26065 (15)0.04533 (13)0.0533 (3)
H230.53261.25060.10580.064*
C240.40805 (13)1.17747 (12)0.05590 (10)0.0412 (3)
C250.37906 (13)1.07426 (12)0.15761 (10)0.0403 (3)
C260.22252 (15)0.58092 (12)0.38987 (10)0.0435 (3)
C270.33649 (18)0.49550 (14)0.45126 (13)0.0590 (4)
H270.35030.52290.50640.071*
C280.4310 (2)0.36850 (16)0.43128 (17)0.0739 (5)
H280.50780.31240.47260.089*
C290.4112 (2)0.32639 (15)0.35130 (16)0.0695 (4)
H290.47550.24260.33730.083*
C300.29633 (18)0.40778 (15)0.29184 (14)0.0594 (4)
H300.28140.37830.23850.071*
C310.20241 (16)0.53399 (13)0.31095 (11)0.0492 (3)
H310.12450.58830.27030.059*
H4A0.405 (3)0.985 (2)0.301 (2)0.106 (7)*
H8−0.1719 (19)1.0831 (17)0.0782 (15)0.065 (5)*
H180.2265 (18)1.1249 (15)−0.0844 (14)0.054 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0677 (6)0.0516 (5)0.0457 (5)−0.0282 (4)−0.0212 (4)−0.0070 (4)
O20.0656 (6)0.0651 (6)0.0408 (5)−0.0325 (5)−0.0224 (4)−0.0019 (4)
O30.0688 (6)0.0569 (5)0.0340 (4)−0.0363 (5)−0.0133 (4)−0.0061 (4)
O40.0679 (6)0.0729 (7)0.0496 (5)−0.0398 (5)−0.0200 (5)−0.0094 (5)
N10.0470 (6)0.0469 (6)0.0327 (5)−0.0145 (4)−0.0058 (4)−0.0078 (4)
C20.0430 (6)0.0406 (6)0.0306 (5)−0.0140 (5)−0.0105 (4)−0.0075 (4)
C30.0437 (6)0.0344 (5)0.0303 (5)−0.0128 (4)−0.0101 (4)−0.0060 (4)
C40.0495 (6)0.0391 (6)0.0311 (5)−0.0170 (5)−0.0125 (4)−0.0029 (4)
C50.0527 (7)0.0478 (6)0.0328 (5)−0.0211 (5)−0.0077 (5)−0.0036 (5)
C60.0495 (8)0.0672 (9)0.0528 (8)−0.0153 (7)−0.0008 (6)−0.0134 (7)
C70.0427 (6)0.0456 (6)0.0346 (5)−0.0155 (5)−0.0099 (4)−0.0088 (5)
N80.0553 (6)0.0470 (6)0.0392 (5)−0.0141 (5)−0.0214 (5)−0.0065 (4)
C90.0465 (6)0.0416 (6)0.0411 (6)−0.0093 (5)−0.0138 (5)−0.0102 (5)
C100.0755 (10)0.0439 (7)0.0574 (8)−0.0109 (7)−0.0311 (7)−0.0028 (6)
C110.0842 (11)0.0372 (7)0.0783 (11)−0.0144 (7)−0.0298 (9)−0.0087 (7)
C120.0701 (9)0.0455 (7)0.0703 (9)−0.0146 (6)−0.0219 (7)−0.0222 (7)
C130.0535 (7)0.0459 (7)0.0469 (7)−0.0106 (5)−0.0150 (5)−0.0169 (5)
C140.0420 (6)0.0387 (6)0.0355 (5)−0.0098 (4)−0.0089 (4)−0.0100 (4)
C150.0423 (6)0.0371 (5)0.0345 (5)−0.0112 (4)−0.0100 (4)−0.0097 (4)
C160.0380 (6)0.0364 (5)0.0350 (5)−0.0115 (4)−0.0076 (4)−0.0102 (4)
C170.0409 (6)0.0386 (6)0.0331 (5)−0.0138 (4)−0.0059 (4)−0.0093 (4)
N180.0495 (6)0.0438 (5)0.0344 (5)−0.0199 (4)−0.0101 (4)−0.0058 (4)
C190.0386 (6)0.0362 (5)0.0431 (6)−0.0114 (4)−0.0028 (5)−0.0110 (5)
C200.0535 (8)0.0456 (7)0.0473 (7)−0.0178 (6)−0.0058 (6)−0.0046 (5)
C210.0603 (8)0.0479 (7)0.0601 (8)−0.0249 (6)0.0001 (7)−0.0038 (6)
C220.0618 (9)0.0573 (8)0.0727 (10)−0.0348 (7)−0.0006 (7)−0.0157 (7)
C230.0503 (7)0.0564 (8)0.0598 (8)−0.0265 (6)−0.0044 (6)−0.0179 (6)
C240.0374 (6)0.0399 (6)0.0462 (6)−0.0137 (5)−0.0034 (5)−0.0142 (5)
C250.0389 (6)0.0436 (6)0.0408 (6)−0.0134 (5)−0.0077 (5)−0.0142 (5)
C260.0488 (7)0.0377 (6)0.0413 (6)−0.0192 (5)−0.0094 (5)−0.0012 (5)
C270.0668 (9)0.0463 (7)0.0622 (9)−0.0177 (6)−0.0276 (7)−0.0006 (6)
C280.0695 (10)0.0471 (8)0.0905 (12)−0.0093 (7)−0.0319 (9)0.0010 (8)
C290.0670 (10)0.0402 (7)0.0916 (12)−0.0172 (7)−0.0074 (9)−0.0137 (7)
C300.0652 (9)0.0512 (8)0.0671 (9)−0.0294 (7)−0.0005 (7)−0.0204 (7)
C310.0530 (7)0.0451 (7)0.0511 (7)−0.0209 (6)−0.0090 (6)−0.0102 (5)

Geometric parameters (Å, °)

O1—C71.2232 (15)C12—H120.93
O2—C151.2412 (14)C13—C141.3797 (17)
O3—C171.2360 (14)C13—H130.93
O4—C251.3210 (15)C15—C161.4679 (15)
O4—H4A0.99 (2)C16—C251.3908 (16)
N1—C61.4572 (18)C16—C171.4559 (15)
N1—C51.4577 (16)C17—N181.3666 (15)
N1—C21.4645 (15)N18—C191.3748 (16)
C2—C141.5092 (16)N18—H180.900 (16)
C2—C71.5546 (16)C19—C241.3950 (17)
C2—C31.5824 (16)C19—C201.4035 (17)
C3—C151.5123 (16)C20—C211.371 (2)
C3—C41.5466 (15)C20—H200.93
C3—H30.98C21—C221.388 (2)
C4—C261.5124 (17)C21—H210.93
C4—C51.5265 (18)C22—C231.371 (2)
C4—H40.98C22—H220.93
C5—H5A0.97C23—C241.4068 (18)
C5—H5B0.97C23—H230.93
C6—H6A0.96C24—C251.4389 (17)
C6—H6B0.96C26—C271.3840 (18)
C6—H6C0.96C26—C311.3907 (18)
C7—N81.3526 (16)C27—C281.397 (2)
N8—C91.3999 (17)C27—H270.93
N8—H80.886 (18)C28—C291.366 (3)
C9—C101.3791 (18)C28—H280.93
C9—C141.3922 (16)C29—C301.369 (2)
C10—C111.385 (2)C29—H290.93
C10—H100.93C30—C311.385 (2)
C11—C121.379 (2)C30—H300.93
C11—H110.93C31—H310.93
C12—C131.3915 (19)
C25—O4—H4A102.8 (13)C14—C13—H13120.9
C6—N1—C5115.61 (11)C12—C13—H13120.9
C6—N1—C2115.01 (10)C13—C14—C9120.22 (11)
C5—N1—C2106.72 (9)C13—C14—C2131.02 (10)
N1—C2—C14113.47 (9)C9—C14—C2108.75 (10)
N1—C2—C7113.94 (10)O2—C15—C16119.22 (11)
C14—C2—C7101.31 (9)O2—C15—C3119.46 (10)
N1—C2—C3102.76 (8)C16—C15—C3121.25 (9)
C14—C2—C3117.72 (10)C25—C16—C17119.02 (10)
C7—C2—C3107.99 (9)C25—C16—C15118.98 (10)
C15—C3—C4114.61 (9)C17—C16—C15121.97 (10)
C15—C3—C2112.81 (9)O3—C17—N18118.80 (10)
C4—C3—C2105.06 (9)O3—C17—C16124.44 (10)
C15—C3—H3108.0N18—C17—C16116.76 (10)
C4—C3—H3108.0N18—C19—C24119.67 (11)
C2—C3—H3108.0N18—C19—C20119.99 (12)
C26—C4—C5115.35 (10)C24—C19—C20120.32 (12)
C26—C4—C3112.53 (9)C21—C20—C19119.04 (14)
C5—C4—C3102.87 (9)C21—C20—H20120.5
C26—C4—H4108.6C19—C20—H20120.5
C5—C4—H4108.6C20—C21—C22121.10 (13)
C3—C4—H4108.6C20—C21—H21119.4
N1—C5—C4102.03 (10)C22—C21—H21119.4
N1—C5—H5A111.4C23—C22—C21120.47 (14)
C4—C5—H5A111.4C23—C22—H22119.8
N1—C5—H5B111.4C21—C22—H22119.8
C4—C5—H5B111.4C22—C23—C24119.78 (14)
H5A—C5—H5B109.2C22—C23—H23120.1
N1—C6—H6A109.5C24—C23—H23120.1
N1—C6—H6B109.5C19—C24—C23119.28 (12)
H6A—C6—H6B109.5C19—C24—C25117.81 (11)
N1—C6—H6C109.5C23—C24—C25122.91 (12)
H6A—C6—H6C109.5O4—C25—C16121.98 (11)
H6B—C6—H6C109.5O4—C25—C24116.49 (11)
O1—C7—N8125.56 (11)C16—C25—C24121.52 (11)
O1—C7—C2126.01 (10)C27—C26—C31117.78 (13)
N8—C7—C2108.42 (10)C27—C26—C4120.84 (12)
C7—N8—C9111.31 (10)C31—C26—C4121.36 (11)
C7—N8—H8119.7 (11)C26—C27—C28120.68 (15)
C9—N8—H8125.8 (11)C26—C27—H27119.7
C10—C9—C14121.77 (12)C28—C27—H27119.7
C10—C9—N8128.28 (12)C29—C28—C27120.29 (15)
C14—C9—N8109.94 (10)C29—C28—H28119.9
C9—C10—C11117.42 (13)C27—C28—H28119.9
C9—C10—H10121.3C28—C29—C30119.90 (15)
C11—C10—H10121.3C28—C29—H29120.0
C12—C11—C10121.45 (14)C30—C29—H29120.0
C12—C11—H11119.3C29—C30—C31120.13 (15)
C10—C11—H11119.3C29—C30—H30119.9
C11—C12—C13120.76 (13)C31—C30—H30119.9
C11—C12—H12119.6C30—C31—C26121.18 (13)
C13—C12—H12119.6C30—C31—H31119.4
C14—C13—C12118.27 (12)C26—C31—H31119.4
C6—N1—C2—C1467.51 (14)C4—C3—C15—O2−14.08 (15)
C5—N1—C2—C14−162.83 (10)C2—C3—C15—O2106.11 (12)
C6—N1—C2—C7−47.74 (15)C4—C3—C15—C16168.83 (10)
C5—N1—C2—C781.91 (12)C2—C3—C15—C16−70.98 (13)
C6—N1—C2—C3−164.29 (11)O2—C15—C16—C25−10.92 (17)
C5—N1—C2—C3−34.63 (11)C3—C15—C16—C25166.18 (10)
N1—C2—C3—C15−116.48 (10)O2—C15—C16—C17171.31 (11)
C14—C2—C3—C159.00 (13)C3—C15—C16—C17−11.59 (16)
C7—C2—C3—C15122.80 (10)C25—C16—C17—O3173.82 (11)
N1—C2—C3—C49.05 (11)C15—C16—C17—O3−8.41 (18)
C14—C2—C3—C4134.53 (10)C25—C16—C17—N18−5.28 (16)
C7—C2—C3—C4−111.68 (10)C15—C16—C17—N18172.49 (10)
C15—C3—C4—C26−93.05 (12)O3—C17—N18—C19−175.84 (11)
C2—C3—C4—C26142.55 (10)C16—C17—N18—C193.31 (17)
C15—C3—C4—C5142.18 (10)C17—N18—C19—C24−0.20 (18)
C2—C3—C4—C517.79 (11)C17—N18—C19—C20178.42 (11)
C6—N1—C5—C4176.30 (10)N18—C19—C20—C21−178.69 (12)
C2—N1—C5—C446.99 (11)C24—C19—C20—C21−0.08 (19)
C26—C4—C5—N1−161.42 (9)C19—C20—C21—C22−0.1 (2)
C3—C4—C5—N1−38.53 (11)C20—C21—C22—C230.2 (2)
N1—C2—C7—O1−56.11 (16)C21—C22—C23—C24−0.2 (2)
C14—C2—C7—O1−178.34 (12)N18—C19—C24—C23178.72 (11)
C3—C2—C7—O157.35 (15)C20—C19—C24—C230.10 (18)
N1—C2—C7—N8123.09 (11)N18—C19—C24—C25−0.94 (16)
C14—C2—C7—N80.87 (12)C20—C19—C24—C25−179.56 (11)
C3—C2—C7—N8−123.44 (11)C22—C23—C24—C190.0 (2)
O1—C7—N8—C9−178.42 (12)C22—C23—C24—C25179.67 (13)
C2—C7—N8—C92.37 (14)C17—C16—C25—O4−176.49 (11)
C7—N8—C9—C10175.61 (14)C15—C16—C25—O45.67 (17)
C7—N8—C9—C14−5.01 (15)C17—C16—C25—C244.40 (17)
C14—C9—C10—C11−1.3 (2)C15—C16—C25—C24−173.44 (10)
N8—C9—C10—C11178.02 (15)C19—C24—C25—O4179.58 (11)
C9—C10—C11—C12−1.6 (3)C23—C24—C25—O4−0.07 (18)
C10—C11—C12—C132.4 (3)C19—C24—C25—C16−1.26 (17)
C11—C12—C13—C14−0.2 (2)C23—C24—C25—C16179.10 (12)
C12—C13—C14—C9−2.6 (2)C5—C4—C26—C27−118.66 (13)
C12—C13—C14—C2175.60 (13)C3—C4—C26—C27123.74 (13)
C10—C9—C14—C133.5 (2)C5—C4—C26—C3162.68 (15)
N8—C9—C14—C13−175.95 (11)C3—C4—C26—C31−54.92 (15)
C10—C9—C14—C2−175.11 (13)C31—C26—C27—C282.1 (2)
N8—C9—C14—C25.46 (14)C4—C26—C27—C28−176.58 (14)
N1—C2—C14—C1355.29 (17)C26—C27—C28—C29−0.6 (3)
C7—C2—C14—C13177.84 (13)C27—C28—C29—C30−1.2 (3)
C3—C2—C14—C13−64.72 (17)C28—C29—C30—C311.4 (2)
N1—C2—C14—C9−126.32 (11)C29—C30—C31—C260.2 (2)
C7—C2—C14—C9−3.78 (12)C27—C26—C31—C30−2.0 (2)
C3—C2—C14—C9113.66 (11)C4—C26—C31—C30176.74 (12)

Hydrogen-bond geometry (Å, °)

Cg6 is the centroid of the C26–C31 ring.
D—H···AD—HH···AD···AD—H···A
O4—H4A···O20.99 (2)1.56 (2)2.4840 (14)155 (2)
N8—H8···O3i0.89 (2)1.92 (2)2.7837 (13)165 (2)
N18—H18···O1i0.90 (2)1.95 (2)2.8497 (14)177 (2)
C3—H3···O30.982.212.7944 (13)117
C21—H21···Cg6ii0.932.723.5360 (18)147

Symmetry codes: (i) −x, −y+2, −z; (ii) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5061).

References

  • Amalraj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem.11, 407–419. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cordell, G. (1981). Introduction to Alkaloids: A Biogenic Approach. New York: Wiley International.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Suzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett.35, 6119–6122.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography