PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o992.
Published online 2010 March 31. doi:  10.1107/S1600536810011542
PMCID: PMC2983786

2-Methyl-3-(n-octylsulfan­yl)quinoxaline

Abstract

All the non-H atoms of the title compound, C17H24N2S, lie almost in a common plane (r.m.s. deviation = 0.049 Å). The octyl chain adopts an all-trans conformation.

Related literature

For the biological activity of quinoxaline derivatives, see: Kleim et al. (1995 [triangle]). For the anti­tumor and anti­tuberculous properties of quinoxaline derivatives, see: Abasolo et al. (1987 [triangle]); Rodrigo et al. (2002 [triangle]). For the anti­fungal, herbicidal, anti­dyslipidemic and anti-oxidative activity of quinoxaline derivatives, see: Jampilek et al. (2005 [triangle]); Sashidhara et al. (2009 [triangle]); Watkins et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o992-scheme1.jpg

Experimental

Crystal data

  • C17H24N2S
  • M r = 288.44
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o992-efi1.jpg
  • a = 7.3514 (3) Å
  • b = 8.2978 (3) Å
  • c = 14.2168 (5) Å
  • α = 92.275 (2)°
  • β = 98.706 (2)°
  • γ = 103.810 (2)°
  • V = 829.86 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.19 mm−1
  • T = 296 K
  • 0.26 × 0.17 × 0.16 mm

Data collection

  • Bruker APEXII CCD detector diffractometer
  • 29319 measured reflections
  • 6513 independent reflections
  • 3251 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.161
  • S = 1.00
  • 6513 reflections
  • 183 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP (Sheldrick, 2008 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810011542/bt5230sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011542/bt5230Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Quinoxaline derivatives are used as starting compounds in the synthesis of various more complex heterocyclic systems. On the other hand, quinoxaline core constitutes a structural fragment of many important pharmaceuticals and biologically active substances so that compounds containing a quinoxaline fragment attract strong interest of synthetic chemists and biochemists. Quinoxaline derivatives were found to exhibit antimicrobial (Kleim et al. 1995 ), antitumor (Abasolo et al., 1987), and antituberculous activity (Rodrigo et al., 2002).

Bond lengths and angles in title molecule (Fig.1) are normal.

Experimental

To a solution of 3-methylequinoxaline-2(1H)-thione (1 g, 5.68053 mmol) in dimethylformamide (20 ml), was added CH3(CH2)6C2I ,K2CO3 (1 g, 7.46 mmol) and a catalytic quantity of tetrabutylammoniumbromide. The mixture was stirred at room temperature for 24 h. The solution was filtered to remove the salts. The solvent was removed under reduced pressure.

The residue was crystallized in ethanol to afford the title compound as colourless crystals.

Refinement

All H atoms were geometrically positioned and treated as riding with Cmethyl—H = 0.96 Å, Cmethylene—H = 0.97 Å and Caromatic—H = 0.93 Å with U(H) = 1.2Ueq(C) or U(H) = 1.5Ueq(Cmethyl) .

Figures

Fig. 1.
: Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Crystal data

C17H24N2SZ = 2
Mr = 288.44F(000) = 312
Triclinic, P1Dx = 1.154 Mg m3
Hall symbol: -P 1Melting point: 374 K
a = 7.3514 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.2978 (3) ÅCell parameters from 2685 reflections
c = 14.2168 (5) Åθ = 2.5–27.3°
α = 92.275 (2)°µ = 0.19 mm1
β = 98.706 (2)°T = 296 K
γ = 103.810 (2)°Block, colourless
V = 829.86 (5) Å30.26 × 0.17 × 0.16 mm

Data collection

Bruker APEXII CCD detector diffractometer3251 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
graphiteθmax = 33.6°, θmin = 2.8°
ω and [var phi] scansh = −10→11
29319 measured reflectionsk = −12→12
6513 independent reflectionsl = −22→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0769P)2 + 0.0189P] where P = (Fo2 + 2Fc2)/3
6513 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Experimental. The data collection nominally covered a sphere of reciprocal space, by a combination of seven sets of exposures; each set had a different [var phi] angle for the crystal and each exposure covered 0.5° in ω and 25 seconds in time. The crystal-to-detector distance was 37.5 mm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.61857 (5)0.28251 (5)0.04284 (3)0.05291 (14)
N20.67349 (16)0.13786 (14)−0.11823 (8)0.0467 (3)
C80.54850 (18)0.17628 (16)−0.07085 (10)0.0426 (3)
N10.28116 (16)0.05407 (15)−0.19181 (9)0.0518 (3)
C100.87038 (19)0.29990 (18)0.06244 (11)0.0493 (3)
H10A0.89330.18960.05970.059*
H10B0.92630.35960.01240.059*
C70.34717 (18)0.13428 (17)−0.10860 (11)0.0472 (3)
C10.6056 (2)0.05508 (17)−0.20663 (10)0.0476 (3)
C110.9631 (2)0.39073 (19)0.15840 (11)0.0552 (4)
H11A0.90860.32980.20850.066*
H11B0.93790.50020.16150.066*
C60.4093 (2)0.01226 (17)−0.24318 (10)0.0503 (3)
C121.1760 (2)0.40888 (19)0.17481 (11)0.0550 (4)
H12A1.19900.29890.16890.066*
H12B1.22870.47110.12470.066*
C141.4944 (2)0.5180 (2)0.27832 (11)0.0593 (4)
H14A1.52010.40970.26890.071*
H14B1.53690.58310.22700.071*
C131.2816 (2)0.4944 (2)0.27024 (11)0.0571 (4)
H13A1.23720.42850.32090.069*
H13B1.25390.60220.27860.069*
C50.3444 (3)−0.0724 (2)−0.33399 (12)0.0654 (4)
H50.2151−0.1026−0.35800.078*
C151.6108 (2)0.6024 (2)0.37177 (12)0.0659 (4)
H15A1.57570.53410.42310.079*
H15B1.58110.70850.38350.079*
C90.2124 (2)0.1842 (2)−0.05151 (13)0.0626 (4)
H9A0.08600.1513−0.08720.094*
H9B0.24800.3028−0.03770.094*
H9C0.21660.13080.00720.094*
C20.7318 (3)0.0135 (2)−0.26280 (12)0.0630 (4)
H20.86160.0409−0.23970.076*
C161.8230 (3)0.6316 (3)0.37289 (14)0.0818 (6)
H16A1.85230.52470.36320.098*
H16B1.85620.69560.31960.098*
C30.6642 (3)−0.0667 (2)−0.35107 (13)0.0737 (5)
H30.7489−0.0927−0.38800.088*
C40.4702 (3)−0.1106 (2)−0.38715 (13)0.0748 (5)
H40.4266−0.1660−0.44750.090*
C171.9438 (3)0.7205 (3)0.46263 (17)0.1066 (8)
H17A1.92240.82950.47080.160*
H17B2.07520.73030.45870.160*
H17C1.91140.65890.51600.160*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0394 (2)0.0656 (2)0.0517 (2)0.01121 (16)0.00697 (15)−0.00649 (16)
N20.0370 (6)0.0531 (6)0.0480 (7)0.0077 (5)0.0075 (5)0.0010 (5)
C80.0345 (7)0.0467 (7)0.0450 (7)0.0078 (5)0.0052 (5)0.0039 (6)
N10.0393 (6)0.0597 (7)0.0529 (7)0.0106 (5)−0.0004 (5)0.0030 (6)
C100.0370 (7)0.0551 (8)0.0511 (8)0.0046 (6)0.0052 (6)−0.0026 (6)
C70.0346 (7)0.0498 (7)0.0555 (9)0.0087 (6)0.0049 (6)0.0064 (6)
C10.0454 (8)0.0501 (7)0.0467 (8)0.0093 (6)0.0090 (6)0.0041 (6)
C110.0465 (8)0.0620 (9)0.0523 (9)0.0077 (7)0.0041 (7)−0.0011 (7)
C60.0489 (8)0.0518 (8)0.0468 (8)0.0095 (6)0.0018 (6)0.0059 (6)
C120.0475 (8)0.0601 (8)0.0507 (8)0.0058 (7)0.0004 (7)0.0006 (7)
C140.0528 (9)0.0644 (9)0.0518 (9)0.0041 (7)−0.0018 (7)0.0044 (7)
C130.0518 (9)0.0618 (9)0.0514 (9)0.0071 (7)0.0009 (7)0.0010 (7)
C50.0667 (11)0.0707 (10)0.0515 (9)0.0130 (8)−0.0048 (8)−0.0018 (8)
C150.0579 (10)0.0745 (10)0.0554 (9)0.0070 (8)−0.0045 (8)−0.0010 (8)
C90.0383 (8)0.0779 (10)0.0721 (11)0.0181 (7)0.0082 (7)−0.0061 (8)
C20.0597 (10)0.0699 (10)0.0616 (10)0.0151 (8)0.0203 (8)−0.0006 (8)
C160.0637 (12)0.1066 (15)0.0644 (11)0.0139 (10)−0.0064 (9)−0.0109 (10)
C30.0848 (14)0.0779 (11)0.0645 (11)0.0220 (10)0.0298 (10)−0.0013 (9)
C40.0960 (15)0.0749 (11)0.0481 (10)0.0159 (10)0.0067 (10)−0.0051 (8)
C170.0735 (14)0.138 (2)0.0857 (16)0.0068 (13)−0.0159 (12)−0.0248 (14)

Geometric parameters (Å, °)

S1—C81.7530 (14)C14—H14B0.9700
S1—C101.7995 (14)C13—H13A0.9700
N2—C81.3077 (18)C13—H13B0.9700
N2—C11.3705 (18)C5—C41.363 (3)
C8—C71.4485 (18)C5—H50.9300
N1—C71.2990 (18)C15—C161.518 (2)
N1—C61.373 (2)C15—H15A0.9700
C10—C111.5119 (19)C15—H15B0.9700
C10—H10A0.9700C9—H9A0.9600
C10—H10B0.9700C9—H9B0.9600
C7—C91.491 (2)C9—H9C0.9600
C1—C21.405 (2)C2—C31.361 (2)
C1—C61.411 (2)C2—H20.9300
C11—C121.517 (2)C16—C171.493 (2)
C11—H11A0.9700C16—H16A0.9700
C11—H11B0.9700C16—H16B0.9700
C6—C51.403 (2)C3—C41.395 (3)
C12—C131.513 (2)C3—H30.9300
C12—H12A0.9700C4—H40.9300
C12—H12B0.9700C17—H17A0.9600
C14—C151.511 (2)C17—H17B0.9600
C14—C131.515 (2)C17—H17C0.9600
C14—H14A0.9700
C8—S1—C10101.52 (7)C14—C13—H13A109.2
C8—N2—C1116.84 (12)C12—C13—H13B109.2
N2—C8—C7122.43 (13)C14—C13—H13B109.2
N2—C8—S1120.95 (10)H13A—C13—H13B107.9
C7—C8—S1116.62 (10)C4—C5—C6120.31 (17)
C7—N1—C6117.62 (12)C4—C5—H5119.8
C11—C10—S1110.83 (10)C6—C5—H5119.8
C11—C10—H10A109.5C14—C15—C16112.72 (16)
S1—C10—H10A109.5C14—C15—H15A109.0
C11—C10—H10B109.5C16—C15—H15A109.0
S1—C10—H10B109.5C14—C15—H15B109.0
H10A—C10—H10B108.1C16—C15—H15B109.0
N1—C7—C8121.19 (13)H15A—C15—H15B107.8
N1—C7—C9119.08 (12)C7—C9—H9A109.5
C8—C7—C9119.73 (13)C7—C9—H9B109.5
N2—C1—C2120.09 (13)H9A—C9—H9B109.5
N2—C1—C6120.89 (13)C7—C9—H9C109.5
C2—C1—C6119.02 (14)H9A—C9—H9C109.5
C10—C11—C12111.23 (13)H9B—C9—H9C109.5
C10—C11—H11A109.4C3—C2—C1119.96 (16)
C12—C11—H11A109.4C3—C2—H2120.0
C10—C11—H11B109.4C1—C2—H2120.0
C12—C11—H11B109.4C17—C16—C15114.54 (18)
H11A—C11—H11B108.0C17—C16—H16A108.6
N1—C6—C5119.52 (14)C15—C16—H16A108.6
N1—C6—C1121.03 (13)C17—C16—H16B108.6
C5—C6—C1119.45 (14)C15—C16—H16B108.6
C13—C12—C11115.33 (13)H16A—C16—H16B107.6
C13—C12—H12A108.4C2—C3—C4121.23 (17)
C11—C12—H12A108.4C2—C3—H3119.4
C13—C12—H12B108.4C4—C3—H3119.4
C11—C12—H12B108.4C5—C4—C3120.02 (17)
H12A—C12—H12B107.5C5—C4—H4120.0
C15—C14—C13115.44 (14)C3—C4—H4120.0
C15—C14—H14A108.4C16—C17—H17A109.5
C13—C14—H14A108.4C16—C17—H17B109.5
C15—C14—H14B108.4H17A—C17—H17B109.5
C13—C14—H14B108.4C16—C17—H17C109.5
H14A—C14—H14B107.5H17A—C17—H17C109.5
C12—C13—C14112.02 (13)H17B—C17—H17C109.5
C12—C13—H13A109.2

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5230).

References

  • Abasolo, M. I., Gaozza, C. H. & Fernandez, B. M. (1987). J. Heterocycl. Chem.24, 1771–1775.
  • Bruker (2005). APEX2 andSAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Jampilek, J., Dolezal, M., Kunes, J., Buchta, V. & Kralova, K. (2005). Med. Chem.1, 591–599. [PubMed]
  • Kleim, J. P., Bender, R., Kirsch, R., Meichsner, C., Paessens, A., Rosner, M., Rubsamen Waigmann, H., Kaiser, R., Wichers, M., Schneweis, K. E., Winkler, I. & Riess, G. (1995). Antimicrob. Agents Chemother.39, 2253–2257. [PMC free article] [PubMed]
  • Rodrigo, G. A., Robinshon, A. E., Hedrera, M. E., Kogan, M., Sicardi, S. M. & Fernaandez, B. M. (2002). Trends Heterocycl. Chem.8, 137–143.
  • Sashidhara, K. V., Kumar, A., Bhatia, G., Khan, M. M., Khanna, A. K. & Saxena, J. K. (2009). Eur. J. Med. Chem.44, 1813–1818. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Watkins, A. J., Nicol, G. W. & Shawa, L. J. (2009). Soil Biol. Biochem.41, 580–585.
  • Westrip, S. P. (2010). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography