PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o974–o975.
Published online 2010 March 27. doi:  10.1107/S1600536810011402
PMCID: PMC2983783

4-{3-[Hydr­oxy(phen­yl)meth­yl]-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-4-yl}benzene­sulfonamide

Abstract

In the title compound, C15H14N4O3S2, the hydr­oxy group is disordered over two positions with occupancies of 0.619 (5) and 0.381 (5). The benzene ring attached to the heterocycle makes a dihedral angle of 86.92 (9)° with respect to the best plane through the five-membered ring. The crystal packing is stabilized by inter­molecular O—H(...)O, N—H(...)S, N—H(...)N, C—H(...)O and C—H(...)N hydrogen bonds, and N—H(...)π and C—H(...)π inter­actions.

Related literature

For the pharmacological activity of functionalized 1,2,4-triazoles, see: De La Rosa et al. (2006 [triangle]); Mavrova et al. (2009 [triangle]); Shiradkar et al. (2007 [triangle]). For annular tautomerism in 1,2,4-triazoles in the solid state and in solution, see: Buzykin et al. (2008 [triangle]); Dolzhenko et al. (2010 [triangle]). Two tautomeric fothione (C=S)r.m.s. for 3(5)-thioxo-1,2,4-triazoles may exist in the solid state. For the evidence for the thione (C=S) form, see: Karayel et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o974-scheme1.jpg

Experimental

Crystal data

  • C15H14N4O3S2
  • M r = 362.44
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o974-efi1.jpg
  • a = 8.2498 (5) Å
  • b = 13.5167 (7) Å
  • c = 14.2522 (7) Å
  • V = 1589.26 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.36 mm−1
  • T = 296 K
  • 0.62 × 0.48 × 0.36 mm

Data collection

  • Stoe IPDS 2 diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.815, T max = 0.879
  • 8693 measured reflections
  • 3666 independent reflections
  • 3050 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.066
  • S = 1.01
  • 3666 reflections
  • 245 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.22 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1538 Freidel pairs
  • Flack parameter: 0.14 (5)

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810011402/bt5224sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011402/bt5224Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Comment

Functionalized 1,2,4-triazoles have attracted intense research interest after the discovery that triazole have a wide range of pharmacological properties such as antiviral (De La Rosa et al., 2006), anticancer (Mavrova et al., 2009) and antimycobacterial activity (Shiradkar et al., 2007).

Previous reports have also dealt with the annular tautomerism encountered in 1,2,4-triazoles in the solid state and in solution (Buzykin et al., 2008; Dolzhenko et al., 2010). For 3(5)-thioxo-1,2,4-triazoles, two tautomeric forms may exist in the solid state: the thione (C=S) and the thiol (SH), where the former has been supported by a recent X-ray diffraction study (Karayel et al., 2007). In this context, we prepared the title compound to determine its pharmacological potential and the preferred tautomeric form in the solid state.

The title molecule (Fig. 1) the aromatic rings (C1–C6 and C10–C15) are oriented at angles of 73.79 (10) and 86.92 (9)° with respect to the best plane through the five-membered ring. The dihedral angle between the two six-membered rings is 47.58 (9)°.

In the structure, the molecules are linked by intermolecular O—H···O, N—H···S, N—H···N, C—H···O and C—H···N hydrogen bonds (Table 1, Fig. 2), and N—H···π and C—H···π interations (Table 1). In addition, there is also a weak S2—O3···Cg1 (-1+x, y, z) interaction [(S2)O3···Cg1 = 3.1082 (17) Å, S2—O3···Cg1 = 150.21 (9) °, where Cg1 is a centroid of the ring N1–N3/C8/C9].

Experimental

A mixture of 1-[2-[hydroxy(phenyl)acetyl]]-4-(4-sulfamoylphenyl)-3-thiosemicarbazide (0.005 mol) and 2 N NaOH (20 ml) was heated on a water bath for 3 h. After cooling, the reaction mixture was acidified by the addition of HCl (% 12.5). The precipitate thus obtained was filtered, washed with water and recrystallized from aqueous ethanol.[Yield: 80.2 %, m.p.: 523-526 K]. IR (KBr) ν = 3518, 3437, 3346 (O—H, N—H), 1593 (C=N), 1342, 1154 (SO2) cm-1. 1H-NMR (DMSO-d6, 500 MHz) δ = 5.62 (1H, d, J=3.0 Hz, CHOH), 6.34 (1H, d, J=4.8 Hz, CHOH), 7.17-7.19 (2H, m, Ar—H), 7.22-7.25 (3H, m, Ar—H), 7.41 (2H, d, J=7.90 Hz, Ar—H), 7.52 (2H, s, SO2NH2), 7.87 (2H, d, J=8.54 Hz, Ar—H), 13.91 (1H, s, NH). Analysis calculated for C15H14N4O3S2 : C 49.71, H 3.89, N 15.46, S 17.69 %. Found : C 49.47, H 3.72, N 15.26, S 17.94 %.

Refinement

The H atoms of the aromatic and hydroxyl groups were positioned geometrically with O—H = 0.82 Å, C—H = 0.93Å and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C,O). The H atoms of the NH2 group were located in a difference Fourier synthesis and their positional parameters were refined with Uiso(H) set to 1.2Ueq(N). The N—H distances were restrained to 0.84 (1) Å. The H and O atoms of the hydroxyl group and the H atom of the C atom to which the hydroxyl group is attached are disordered in two alternative positions with occupancy factors 0.620 (4):0.380 (4). The C—O distances of the disordered hydroxyl group were restrained to 1.30 (1)Å.

Figures

Fig. 1.
View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. The minor occupied sites of the disordered atoms have been omitted for clarity.
Fig. 2.
View down the a axis of the packing and hydrogen bonding interactions of the title compound. All hydrogen atoms not involved in hydrogen bonding and the minor occupied sites of the disordered atoms have been omitted for clarity.

Crystal data

C15H14N4O3S2F(000) = 752
Mr = 362.44Dx = 1.515 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 14591 reflections
a = 8.2498 (5) Åθ = 1.4–28.0°
b = 13.5167 (7) ŵ = 0.36 mm1
c = 14.2522 (7) ÅT = 296 K
V = 1589.26 (15) Å3Prism, colourless
Z = 40.62 × 0.48 × 0.36 mm

Data collection

Stoe IPDS 2 diffractometer3666 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3050 reflections with I > 2σ(I)
plane graphiteRint = 0.036
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.1°
ω scansh = −10→10
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)k = −14→16
Tmin = 0.815, Tmax = 0.879l = −16→17
8693 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066w = 1/[σ2(Fo2) + (0.0413P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3666 reflectionsΔρmax = 0.22 e Å3
245 parametersΔρmin = −0.22 e Å3
4 restraintsAbsolute structure: Flack (1983), 1538 Freidel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.14 (5)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
S10.17287 (5)0.71648 (3)0.41130 (3)0.0371 (1)
S20.79576 (4)0.40875 (3)0.33694 (3)0.0315 (1)
O1A0.2506 (3)0.4120 (2)0.6848 (2)0.0621 (9)0.620 (4)
O20.92661 (14)0.43807 (13)0.39572 (10)0.0510 (5)
O30.77632 (18)0.30741 (11)0.31372 (14)0.0592 (5)
N1−0.03407 (16)0.55833 (11)0.60444 (10)0.0327 (4)
N2−0.01523 (16)0.63968 (11)0.54897 (10)0.0317 (4)
N30.18483 (14)0.54616 (10)0.51694 (9)0.0270 (3)
N40.81784 (19)0.46661 (14)0.23974 (11)0.0406 (5)
C1−0.03337 (19)0.35747 (13)0.66854 (13)0.0334 (5)
C2−0.0487 (2)0.33998 (14)0.76345 (13)0.0382 (5)
C3−0.1902 (3)0.29833 (14)0.79838 (14)0.0463 (6)
C4−0.3154 (2)0.27399 (15)0.73879 (17)0.0496 (6)
C5−0.2995 (2)0.29076 (16)0.64419 (16)0.0504 (6)
C6−0.1595 (2)0.33125 (15)0.60919 (14)0.0426 (6)
C7A0.1213 (9)0.4010 (5)0.6305 (6)0.0333 (16)0.620 (4)
C80.08859 (17)0.50199 (12)0.58420 (12)0.0295 (4)
C90.11550 (16)0.63506 (12)0.49321 (12)0.0282 (4)
C100.33246 (16)0.50982 (11)0.47478 (11)0.0264 (4)
C110.47832 (19)0.53833 (15)0.51248 (13)0.0369 (5)
C120.62079 (19)0.50687 (15)0.47033 (14)0.0379 (5)
C130.61324 (17)0.44786 (13)0.39193 (12)0.0289 (4)
C140.46561 (18)0.41826 (14)0.35441 (12)0.0353 (5)
C150.32367 (18)0.45127 (13)0.39608 (13)0.0352 (5)
C7B0.1184 (15)0.4081 (11)0.6206 (12)0.055 (5)0.380 (4)
O1B0.2021 (5)0.3451 (3)0.5701 (3)0.0600 (16)0.380 (4)
H2A0.035600.356100.804000.0460*
H3−0.200400.286800.862400.0560*
H2−0.080800.689100.549700.0380*
H4A0.734 (3)0.4531 (19)0.2033 (17)0.0660*
H4B0.848 (3)0.5258 (14)0.251 (2)0.0660*
H4−0.410200.246400.762500.0600*
H6−0.149000.341200.544900.0510*
H7A0.155100.356900.579500.0400*0.620 (4)
H110.481500.578200.565600.0440*
H120.720600.525600.494900.0450*
H140.462000.377000.302200.0420*
H150.223500.434000.371000.0420*
H5−0.383900.274600.603700.0600*
H1A0.261600.362800.717900.0930*0.620 (4)
H1B0.237800.301300.604200.0890*0.380 (4)
H7B0.190400.421500.673800.0660*0.380 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0329 (2)0.0357 (2)0.0426 (2)−0.0029 (2)0.0009 (2)0.0101 (2)
S20.0211 (2)0.0390 (2)0.0344 (2)0.0051 (2)0.0029 (1)0.0016 (2)
O1A0.0366 (11)0.0597 (16)0.090 (2)−0.0082 (10)−0.0184 (11)0.0367 (15)
O20.0231 (5)0.0929 (12)0.0369 (7)0.0062 (6)−0.0020 (5)0.0003 (7)
O30.0482 (7)0.0366 (7)0.0928 (12)0.0067 (6)0.0273 (8)−0.0050 (8)
N10.0296 (6)0.0344 (8)0.0341 (7)0.0042 (5)0.0055 (5)0.0036 (6)
N20.0286 (6)0.0291 (7)0.0375 (8)0.0053 (5)0.0045 (5)0.0016 (6)
N30.0223 (5)0.0278 (6)0.0310 (7)0.0012 (5)0.0042 (5)−0.0001 (5)
N40.0343 (7)0.0527 (9)0.0349 (8)0.0026 (7)0.0023 (6)0.0022 (7)
C10.0311 (7)0.0298 (8)0.0392 (9)0.0017 (6)0.0023 (7)0.0063 (8)
C20.0401 (9)0.0372 (9)0.0373 (9)0.0029 (7)−0.0039 (7)0.0033 (8)
C30.0568 (11)0.0421 (10)0.0400 (10)0.0060 (9)0.0142 (9)0.0081 (8)
C40.0392 (9)0.0459 (11)0.0637 (13)−0.0063 (8)0.0146 (9)0.0049 (10)
C50.0405 (9)0.0509 (11)0.0598 (13)−0.0063 (9)−0.0057 (9)−0.0014 (10)
C60.0446 (10)0.0467 (11)0.0366 (10)−0.0007 (8)−0.0020 (8)0.0039 (8)
C7A0.036 (3)0.019 (2)0.045 (3)0.0050 (18)0.006 (2)0.015 (2)
C80.0253 (6)0.0313 (8)0.0318 (8)0.0009 (5)0.0035 (6)0.0015 (7)
C90.0245 (6)0.0292 (8)0.0310 (8)−0.0009 (6)−0.0009 (6)−0.0025 (7)
C100.0212 (6)0.0271 (7)0.0308 (7)0.0014 (5)0.0036 (5)0.0016 (6)
C110.0278 (7)0.0468 (10)0.0362 (9)0.0000 (7)−0.0034 (6)−0.0125 (8)
C120.0221 (7)0.0498 (10)0.0417 (10)0.0002 (6)−0.0043 (6)−0.0110 (8)
C130.0221 (6)0.0331 (8)0.0315 (8)0.0020 (5)0.0029 (5)0.0017 (7)
C140.0266 (7)0.0436 (10)0.0358 (9)−0.0003 (7)0.0021 (6)−0.0123 (8)
C150.0215 (6)0.0425 (9)0.0417 (9)−0.0028 (6)0.0005 (6)−0.0104 (8)
C7B0.019 (5)0.084 (11)0.063 (8)0.008 (5)0.008 (4)0.007 (7)
O1B0.069 (3)0.044 (2)0.067 (3)0.0257 (19)0.044 (2)0.0191 (19)

Geometric parameters (Å, °)

S1—C91.6727 (17)C3—C41.377 (3)
S2—O21.4227 (14)C4—C51.374 (3)
S2—O31.4183 (16)C5—C61.372 (3)
S2—N41.6012 (17)C7A—C81.540 (7)
S2—C131.7779 (15)C7B—C81.393 (15)
O1A—C7A1.326 (8)C10—C111.373 (2)
O1B—C7B1.312 (16)C10—C151.375 (2)
O1A—H1A0.8200C11—C121.387 (2)
O1B—H1B0.8200C12—C131.374 (3)
N1—C81.299 (2)C13—C141.389 (2)
N1—N21.363 (2)C14—C151.387 (2)
N2—C91.341 (2)C2—H2A0.9300
N3—C81.381 (2)C3—H30.9300
N3—C91.373 (2)C4—H40.9300
N3—C101.4442 (18)C5—H50.9300
N2—H20.8600C6—H60.9300
N4—H4A0.88 (2)C7A—H7A0.9800
N4—H4B0.85 (2)C7B—H7B0.9800
C1—C21.379 (3)C11—H110.9300
C1—C7A1.506 (8)C12—H120.9300
C1—C61.387 (2)C14—H140.9300
C1—C7B1.582 (14)C15—H150.9300
C2—C31.388 (3)
S1···N2i3.2744 (15)C8···O2xii3.122 (2)
S1···O3ii3.460 (2)C9···O2xii3.384 (2)
S1···H2Aiii3.0100C10···O1A3.341 (3)
S1···H1Aiii3.0100C10···O1B2.821 (4)
S1···H2i2.4600C12···C6v3.583 (3)
S1···H4iv3.0700C13···C2iii3.444 (3)
S2···H6v3.1300C14···C6vi3.565 (3)
S2···H1Bvi3.0000C14···C5vi3.573 (3)
O1A···N33.051 (3)C14···C2iii3.582 (3)
O1A···C103.341 (3)C15···O1B3.036 (5)
O1A···O3vii2.973 (3)C15···C5vi3.473 (3)
O1B···O3vii2.714 (4)C15···O2xii3.2805 (19)
O1B···C153.036 (5)C1···H4Ax3.09 (3)
O1B···N32.825 (4)C2···H1A2.6600
O1B···C102.821 (4)C2···H4Bx3.07 (2)
O2···N3v3.1076 (19)C2···H14vii3.0800
O2···C15v3.2805 (19)C3···H14vii3.0400
O2···C8v3.122 (2)C3···H4Bx2.79 (2)
O2···C9v3.384 (2)C4···H4Bx2.725 (19)
O3···C7Avi3.194 (7)C5···H15vii3.0500
O3···C1vi3.400 (2)C5···H4Bx2.94 (2)
O3···C7Bvi3.326 (15)C8···H62.9800
O3···O1Bvi2.714 (4)C9···H3xiii2.9900
O3···S1viii3.460 (2)C10···H7A2.9400
O3···O1Avi2.973 (3)H1A···S1x3.0100
O1A···H2A2.5700H1A···C22.6600
O1B···H62.9200H1A···H2A2.2300
O2···H122.5100H1A···O3vii2.3500
O2···H15v2.4800H1B···O3vii1.9000
O2···H6v2.5700H1B···S2vii3.0000
O3···H7Avi2.8700H2···S1xi2.4600
O3···H142.7600H2A···O1A2.5700
O3···H1Bvi1.9000H2A···S1x3.0100
O3···H1Avi2.3500H2A···H1A2.2300
O3···H4ix2.9000H2A···H7B2.4200
N1···N32.2008 (18)H3···C9xiv2.9900
N1···C63.240 (2)H4···O3xv2.9000
N1···N4x3.052 (2)H4···S1xvi3.0700
N2···N32.1285 (19)H4A···C1iii3.09 (3)
N2···S1xi3.2744 (15)H4A···N1iii2.18 (2)
N3···O1B2.825 (4)H4B···C2iii3.07 (2)
N3···N22.1285 (19)H4B···C3iii2.79 (2)
N3···O1A3.051 (3)H4B···C5iii2.94 (2)
N3···O2xii3.1076 (19)H4B···C4iii2.725 (19)
N4···C2iii3.447 (3)H6···S2xii3.1300
N4···N1iii3.052 (2)H6···O2xii2.5700
N4···C3iii3.450 (3)H6···C82.9800
N1···H12xii2.5900H6···H7A2.5700
N1···H4Ax2.18 (2)H6···O1B2.9200
N2···H12xii2.7800H7A···C102.9400
C1···O3vii3.400 (2)H7A···H62.5700
C2···C13x3.444 (3)H7A···O3vii2.8700
C2···N4x3.447 (3)H7B···H2A2.4200
C2···C14x3.582 (3)H12···N2v2.7800
C3···N4x3.450 (3)H12···N1v2.5900
C5···C15vii3.473 (3)H12···O22.5100
C5···C14vii3.573 (3)H14···C2vi3.0800
C6···C12xii3.583 (3)H14···O32.7600
C6···C14vii3.565 (3)H14···C3vi3.0400
C6···N13.240 (2)H15···C5vi3.0500
C7A···O3vii3.194 (7)H15···O2xii2.4800
C7B···O3vii3.326 (15)
O2—S2—O3119.49 (10)N3—C8—C7A125.5 (3)
O2—S2—N4106.68 (9)S1—C9—N2127.62 (12)
O2—S2—C13107.47 (8)S1—C9—N3129.04 (11)
O3—S2—N4106.42 (11)N2—C9—N3103.28 (14)
O3—S2—C13107.11 (9)N3—C10—C11118.74 (14)
N4—S2—C13109.42 (8)C11—C10—C15121.81 (14)
C7A—O1A—H1A109.00N3—C10—C15119.39 (12)
C7B—O1B—H1B109.00C10—C11—C12119.16 (17)
N2—N1—C8104.79 (13)C11—C12—C13119.46 (15)
N1—N2—C9113.44 (14)S2—C13—C12119.51 (11)
C9—N3—C10123.12 (13)S2—C13—C14119.16 (13)
C8—N3—C9108.06 (12)C12—C13—C14121.33 (14)
C8—N3—C10128.82 (13)C13—C14—C15118.87 (16)
N1—N2—H2123.00C10—C15—C14119.35 (14)
C9—N2—H2123.00C3—C2—H2A120.00
H4A—N4—H4B122 (2)C1—C2—H2A120.00
S2—N4—H4A108.6 (16)C2—C3—H3120.00
S2—N4—H4B109.2 (19)C4—C3—H3120.00
C2—C1—C7B124.8 (6)C3—C4—H4120.00
C2—C1—C7A119.9 (3)C5—C4—H4120.00
C6—C1—C7A121.1 (4)C6—C5—H5120.00
C6—C1—C7B116.2 (6)C4—C5—H5120.00
C2—C1—C6119.05 (16)C5—C6—H6120.00
C1—C2—C3119.89 (17)C1—C6—H6120.00
C2—C3—C4120.42 (19)O1A—C7A—H7A106.00
C3—C4—C5119.63 (17)C8—C7A—H7A106.00
C4—C5—C6120.21 (18)C1—C7A—H7A106.00
C1—C6—C5120.78 (19)C8—C7B—H7B103.00
O1A—C7A—C8107.0 (5)C1—C7B—H7B103.00
O1A—C7A—C1121.0 (6)O1B—C7B—H7B103.00
C1—C7A—C8110.6 (5)C10—C11—H11120.00
O1B—C7B—C8118.7 (12)C12—C11—H11120.00
C1—C7B—C8114.5 (8)C11—C12—H12120.00
O1B—C7B—C1111.9 (10)C13—C12—H12120.00
N1—C8—N3110.41 (14)C15—C14—H14121.00
N1—C8—C7A124.1 (3)C13—C14—H14121.00
N3—C8—C7B123.4 (6)C10—C15—H15120.00
N1—C8—C7B126.1 (6)C14—C15—H15120.00
O2—S2—C13—C127.66 (18)C2—C1—C6—C51.6 (3)
O2—S2—C13—C14−172.54 (15)C7A—C1—C6—C5179.4 (3)
O3—S2—C13—C12137.22 (16)C2—C1—C7A—O1A8.1 (7)
O3—S2—C13—C14−42.98 (18)C2—C1—C7A—C8−118.0 (4)
N4—S2—C13—C12−107.81 (16)C6—C1—C7A—O1A−169.6 (4)
N4—S2—C13—C1471.99 (16)C6—C1—C7A—C864.3 (6)
C8—N1—N2—C90.93 (18)C1—C2—C3—C40.2 (3)
N2—N1—C8—N30.02 (18)C2—C3—C4—C50.3 (3)
N2—N1—C8—C7A179.2 (4)C3—C4—C5—C60.2 (3)
N1—N2—C9—S1175.96 (12)C4—C5—C6—C1−1.2 (3)
N1—N2—C9—N3−1.44 (18)O1A—C7A—C8—N1−109.8 (5)
C9—N3—C8—N1−0.90 (18)O1A—C7A—C8—N369.3 (6)
C9—N3—C8—C7A179.9 (4)C1—C7A—C8—N123.9 (7)
C10—N3—C8—N1179.74 (14)C1—C7A—C8—N3−157.0 (3)
C10—N3—C8—C7A0.6 (4)N3—C10—C11—C12−177.57 (16)
C8—N3—C9—S1−175.99 (13)C15—C10—C11—C12−0.3 (3)
C8—N3—C9—N21.37 (17)N3—C10—C15—C14178.55 (15)
C10—N3—C9—S13.4 (2)C11—C10—C15—C141.3 (3)
C10—N3—C9—N2−179.23 (13)C10—C11—C12—C13−0.1 (3)
C8—N3—C10—C11−94.4 (2)C11—C12—C13—S2179.21 (15)
C8—N3—C10—C1588.3 (2)C11—C12—C13—C14−0.6 (3)
C9—N3—C10—C1186.3 (2)S2—C13—C14—C15−178.22 (14)
C9—N3—C10—C15−90.99 (19)C12—C13—C14—C151.6 (3)
C6—C1—C2—C3−1.2 (3)C13—C14—C15—C10−1.9 (3)
C7A—C1—C2—C3−178.9 (3)

Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1/2, −y+1, z−1/2; (iv) −x−1/2, −y+1, z−1/2; (v) x+1, y, z; (vi) x+1/2, −y+1/2, −z+1; (vii) x−1/2, −y+1/2, −z+1; (viii) −x+1, y−1/2, −z+1/2; (ix) x+3/2, −y+1/2, −z+1; (x) −x+1/2, −y+1, z+1/2; (xi) x−1/2, −y+3/2, −z+1; (xii) x−1, y, z; (xiii) −x, y+1/2, −z+3/2; (xiv) −x, y−1/2, −z+3/2; (xv) x−3/2, −y+1/2, −z+1; (xvi) −x−1/2, −y+1, z+1/2.

Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O3vii0.822.352.973 (3)134
N2—H2···S1xi0.862.463.2744 (15)158
N4—H4A···N1iii0.88 (2)2.18 (2)3.052 (2)171 (2)
C2—H2A···O1A0.932.572.881 (3)100
C6—H6···O2xii0.932.573.442 (2)155
C12—H12···O20.932.512.892 (2)105
C12—H12···N1v0.932.593.499 (2)165
C15—H15···O2xii0.932.483.2805 (19)145
C2—H2A···Cg3x0.932.903.502 (2)124
N4—H4B···Cg2iii0.85 (2)2.67 (2)3.218 (2)123 (2)
C14—H14···Cg2vi0.932.833.463 (2)126

Symmetry codes: (vii) x−1/2, −y+1/2, −z+1; (xi) x−1/2, −y+3/2, −z+1; (iii) −x+1/2, −y+1, z−1/2; (xii) x−1, y, z; (v) x+1, y, z; (x) −x+1/2, −y+1, z+1/2; (vi) x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5224).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Buzykin, B. I., Mironova, E. V., Nabiullin, V. N., Gubaidullin, A. T. & Litvinov, I. A. (2008). Russ. J. Gen. Chem.78, 643–648.
  • De La Rosa, M., Kim, H. W., Gunic, E., Jenket, C., Boyle, U., Koh, Y., Korboukh, I., Allan, M., Zhang, W., Chen, H., Xu, W., Nilar, S., Yao, N., Hamatake, R., Lang, S. A., Hong, Z., Zhang, Z. & Girardet, J. L. (2006). Bioorg. Med. Chem. Lett.16, 4444–4449. [PubMed]
  • Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2010). Acta Cryst. E66, o549–o550. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Karayel, A., Özbey, S. & Çapan, G. (2007). J. Mol. Struct.841, 118–124.
  • Mavrova, A. T., Wesselinova, D., Tsenov, Y. A. & Denkova, P. (2009). Eur. J. Med. Chem.44, 63–69. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shiradkar, M. R., Murahari, K. K., Gangadasu, H. R., Suresh, T., Kalyan, C. A., Panchal, D., Kaur, R., Burange, P., Ghogare, J., Mokale, V. & Raut, M. (2007). Bioorg. Med. Chem.15, 3997–4008. [PubMed]
  • Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography