PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m350.
Published online 2010 March 3. doi:  10.1107/S1600536810007300
PMCID: PMC2983781

[2-(Piperidin-1-yl)ethyl­amine]dithio­cyanato­zinc(II)

Abstract

In the mononuclear title compound, [Zn(NCS)2(C7H16N2)], the ZnII atom is four-coordinated by two N atoms of the chelating 2-(piperidin-1-yl)ethyl­amine ligand and two N atoms from two thio­cyanate ligands in a distorted tetra­hedral geometry. In the crystal structure, mol­ecules are linked through inter­molecular N—H(...)S hydrogen bonds, forming chains along the b axis.

Related literature

For related structures, see: Wang et al. (2009a [triangle],b [triangle]); Wang (2009 [triangle]). For bond-length and angle data, see: Cameron et al. (1998 [triangle]); Hong (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m350-scheme1.jpg

Experimental

Crystal data

  • [Zn(NCS)2(C7H16N2)]
  • M r = 309.75
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m350-efi1.jpg
  • a = 9.561 (2) Å
  • b = 10.310 (2) Å
  • c = 14.398 (3) Å
  • β = 97.367 (3)°
  • V = 1407.6 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.02 mm−1
  • T = 298 K
  • 0.20 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.688, T max = 0.712
  • 7615 measured reflections
  • 3029 independent reflections
  • 2196 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.095
  • S = 1.04
  • 3029 reflections
  • 145 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810007300/ci5046sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007300/ci5046Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of China (grant No. 30771696), the Natural Science Foundation of Zhejiang Province (grant No. Y407318) and the Science and Technology Plan of Huzhou (grant No. 2009 GG06).

supplementary crystallographic information

Comment

As part of our investigations into novel urease inhibitors (Wang et al., 2009a,b; Wang, 2009), we have synthesized the title compound, a new ZnII complex, and its crystal structure is reported here.

The ZnII atom in the complex is chelated by the two N atoms of 2-piperidin-1-ylethylamine ligand and two N atoms from two thiocyanate ligands, giving a distorted tetrahedral geometry (Fig. 1). The coordinate bond lengths and angles are typical and are comparable with those observed in other related zinc(II) complexes (Cameron et al., 1998; Hong, 2007).

In the crystal structure, molecules are linked through intermolecular N—H···S hydrogen bonds (Table 1), forming chains running along the b axis (Fig. 2).

Experimental

2-Piperidin-1-ylethylamine (1.0 mmol, 128 mg), ammonium thiocyanate (1.0 mmol, 76 mg), and Zn(NO3)2.6H2O (1.0 mmol, 290 mg) were dissolved in MeOH (30 ml). The mixture was stirred at room temperature for 10 min to give a clear colourless solution. After keeping the solution in air for a week, colourless block-shaped crystals were formed at the bottom of the vessel.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances of 0.97 Å, N–H distances of 0.90 Å, and with Uiso(H) set at 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
The molecular packing of the title compound, viewed along the a axis. Intermolecular N—H···S hydrogen bonds are shown as dashed lines.

Crystal data

[Zn(NCS)2(C7H16N2)]F(000) = 640
Mr = 309.75Dx = 1.462 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2403 reflections
a = 9.561 (2) Åθ = 2.4–25.0°
b = 10.310 (2) ŵ = 2.02 mm1
c = 14.398 (3) ÅT = 298 K
β = 97.367 (3)°Block, colourless
V = 1407.6 (5) Å30.20 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer3029 independent reflections
Radiation source: fine-focus sealed tube2196 reflections with I > 2σ(I)
graphiteRint = 0.028
ω scanθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→11
Tmin = 0.688, Tmax = 0.712k = −13→13
7615 measured reflectionsl = −9→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0475P)2 + 0.1775P] where P = (Fo2 + 2Fc2)/3
3029 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = −0.38 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.10783 (3)0.24465 (3)0.24635 (2)0.05057 (13)
S10.28910 (10)0.60126 (8)0.42530 (6)0.0791 (3)
S2−0.19929 (8)0.06124 (9)0.43790 (6)0.0750 (3)
N10.0345 (3)0.2689 (2)0.10961 (16)0.0620 (6)
H1A−0.05560.24180.09790.074*
H1B0.03820.35300.09360.074*
N20.2756 (2)0.1410 (2)0.20451 (14)0.0495 (5)
N30.1803 (3)0.4000 (2)0.31175 (18)0.0706 (7)
N4−0.0197 (3)0.1600 (3)0.32020 (17)0.0676 (6)
C10.1265 (4)0.1900 (4)0.0560 (2)0.0756 (9)
H1C0.12620.2262−0.00620.091*
H1D0.09070.10200.04950.091*
C20.2741 (3)0.1887 (3)0.1060 (2)0.0671 (8)
H2A0.31310.27560.10680.081*
H2B0.33250.13280.07280.081*
C30.2624 (3)−0.0025 (3)0.2047 (2)0.0678 (8)
H3A0.3371−0.04020.17380.081*
H3B0.1729−0.02720.16950.081*
C40.2706 (4)−0.0557 (3)0.3028 (2)0.0791 (9)
H4A0.2666−0.14970.30010.095*
H4B0.1900−0.02550.33130.095*
C50.4045 (4)−0.0145 (4)0.3625 (2)0.0883 (11)
H5A0.4031−0.04390.42640.106*
H5B0.4853−0.05330.33880.106*
C60.4168 (3)0.1305 (4)0.3608 (2)0.0826 (10)
H6A0.50480.15680.39700.099*
H6B0.34000.16890.38920.099*
C70.4124 (3)0.1786 (3)0.2614 (2)0.0691 (8)
H7A0.42220.27230.26150.083*
H7B0.49050.14180.23340.083*
C80.2262 (3)0.4841 (3)0.35825 (19)0.0552 (7)
C9−0.0958 (3)0.1204 (3)0.36869 (18)0.0499 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0569 (2)0.0542 (2)0.04129 (19)0.00372 (13)0.00884 (14)−0.00022 (13)
S10.0986 (6)0.0605 (5)0.0736 (5)−0.0117 (4)−0.0061 (5)−0.0036 (4)
S20.0604 (4)0.0944 (6)0.0750 (5)−0.0167 (4)0.0277 (4)−0.0161 (4)
N10.0697 (15)0.0669 (16)0.0479 (13)0.0098 (11)0.0013 (12)0.0075 (11)
N20.0570 (12)0.0496 (12)0.0432 (11)0.0032 (10)0.0111 (10)0.0058 (9)
N30.101 (2)0.0521 (15)0.0585 (15)−0.0003 (13)0.0080 (13)−0.0040 (12)
N40.0633 (14)0.0833 (18)0.0583 (14)−0.0052 (13)0.0162 (12)0.0001 (13)
C10.107 (3)0.080 (2)0.0385 (15)0.022 (2)0.0079 (16)0.0045 (15)
C20.080 (2)0.075 (2)0.0511 (17)0.0150 (17)0.0243 (15)0.0135 (15)
C30.082 (2)0.0526 (17)0.0687 (19)0.0049 (15)0.0069 (16)0.0014 (14)
C40.091 (2)0.063 (2)0.087 (2)0.0138 (17)0.0214 (19)0.0278 (18)
C50.087 (2)0.113 (3)0.066 (2)0.039 (2)0.0130 (19)0.028 (2)
C60.0624 (18)0.118 (3)0.063 (2)0.0176 (19)−0.0094 (15)−0.003 (2)
C70.0511 (16)0.073 (2)0.084 (2)−0.0015 (14)0.0122 (16)0.0011 (17)
C80.0658 (17)0.0499 (16)0.0513 (16)0.0069 (13)0.0126 (13)0.0116 (13)
C90.0413 (13)0.0584 (16)0.0494 (15)0.0024 (11)0.0031 (11)−0.0129 (12)

Geometric parameters (Å, °)

Zn1—N41.927 (3)C2—H2A0.97
Zn1—N31.940 (3)C2—H2B0.97
Zn1—N12.019 (2)C3—C41.508 (4)
Zn1—N22.080 (2)C3—H3A0.97
S1—C81.614 (3)C3—H3B0.97
S2—C91.611 (3)C4—C51.509 (5)
N1—C11.485 (4)C4—H4A0.97
N1—H1A0.90C4—H4B0.97
N1—H1B0.90C5—C61.500 (5)
N2—C31.485 (3)C5—H5A0.97
N2—C21.500 (3)C5—H5B0.97
N2—C71.503 (3)C6—C71.510 (5)
N3—C81.148 (3)C6—H6A0.97
N4—C91.146 (3)C6—H6B0.97
C1—C21.500 (4)C7—H7A0.97
C1—H1C0.97C7—H7B0.97
C1—H1D0.97
N4—Zn1—N3108.54 (11)N2—C3—C4111.7 (3)
N4—Zn1—N1115.39 (10)N2—C3—H3A109.3
N3—Zn1—N1115.40 (10)C4—C3—H3A109.3
N4—Zn1—N2119.57 (10)N2—C3—H3B109.3
N3—Zn1—N2108.90 (10)C4—C3—H3B109.3
N1—Zn1—N288.02 (9)H3A—C3—H3B107.9
C1—N1—Zn1106.51 (17)C3—C4—C5111.7 (3)
C1—N1—H1A110.4C3—C4—H4A109.3
Zn1—N1—H1A110.4C5—C4—H4A109.3
C1—N1—H1B110.4C3—C4—H4B109.3
Zn1—N1—H1B110.4C5—C4—H4B109.3
H1A—N1—H1B108.6H4A—C4—H4B107.9
C3—N2—C2109.8 (2)C6—C5—C4109.5 (3)
C3—N2—C7108.9 (2)C6—C5—H5A109.8
C2—N2—C7109.4 (2)C4—C5—H5A109.8
C3—N2—Zn1116.27 (17)C6—C5—H5B109.8
C2—N2—Zn1101.04 (16)C4—C5—H5B109.8
C7—N2—Zn1111.06 (17)H5A—C5—H5B108.2
C8—N3—Zn1173.1 (2)C5—C6—C7110.5 (3)
C9—N4—Zn1173.6 (3)C5—C6—H6A109.5
N1—C1—C2109.8 (3)C7—C6—H6A109.5
N1—C1—H1C109.7C5—C6—H6B109.5
C2—C1—H1C109.7C7—C6—H6B109.5
N1—C1—H1D109.7H6A—C6—H6B108.1
C2—C1—H1D109.7N2—C7—C6110.4 (2)
H1C—C1—H1D108.2N2—C7—H7A109.6
C1—C2—N2110.5 (2)C6—C7—H7A109.6
C1—C2—H2A109.5N2—C7—H7B109.6
N2—C2—H2A109.5C6—C7—H7B109.6
C1—C2—H2B109.5H7A—C7—H7B108.1
N2—C2—H2B109.5N3—C8—S1178.9 (3)
H2A—C2—H2B108.1N4—C9—S2178.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.902.653.523 (3)165
N1—H1B···S2ii0.902.713.509 (3)148

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5046).

References

  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cameron, E. M., Louch, W. E., Cameron, T. S. & Knop, O. (1998). Z. Anorg. Allg. Chem.624, 1629–1641.
  • Hong, Z. (2007). Acta Cryst. E63, m132–m134.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, C.-Y. (2009). J. Coord. Chem.62, 2860–2868.
  • Wang, C.-Y., Wu, X., Tu, S.-J. & Jiang, B. (2009a). Synth. React. Inorg. Met. Org. Nano Met. Chem.39, 78–82.
  • Wang, C.-Y., Ye, J.-Y., Lv, C.-Y., Lan, W.-Z. & Zhou, J.-B. (2009b). J. Coord. Chem.62, 2164–2171.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography