PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m397–m398.
Published online 2010 March 13. doi:  10.1107/S1600536810008214
PMCID: PMC2983777

catena-Poly[neodymium(III)-bis­[μ-N-(dimorpholinophosphor­yl)benzene­sulfonamidato]-sodium(I)-bis­[μ-N-(dimorpholinophosphor­yl)benzene­sulfonamidato]]

Abstract

The cubic crystal structure of the title compound, [NaNd(C14H21N3O5PS)4]n, is composed of one-dimensional polymeric chains propagating in [100], built up from [Nd(C14H21N3O5PS)4] anions and sodium cations functioning as linkers. In the complex anion, the Nd3+ ion has an eightfold coordination environment formed by the sulfonyl and phosphoryl O atoms of four bidentate chelating N-(dimorpholinophosphor­yl)benzene­sulfonamidate ligands: the resulting NdO8 polyhedron can be described as inter­mediate between dodeca­hedral and square anti­prismatic. The sodium ion adopts an NaO4 tetra­hedral geometry arising from four monodentate benzene­sulfonamidate ligands. The resulting crystal structure is unusual because it contains substantial voids (800 Å3 per unit cell), within which there is no evidence of included solvent.

Related literature

For general background to the use of bidentate ligands in ring closure in coordination compounds, see: Casas et al. (1995 [triangle]); Amirkhanov et al. (1997 [triangle]); Ly & Woollins (1998 [triangle]). For applications of the chelates formed, see: Zazybin et al. (2006 [triangle]); Karande et al. (2003 [triangle]); Morgalyuk et al. (2005 [triangle]); Xu & Angell (2000 [triangle]). For lanthanide compounds of general formula Na[Ln(L 1)4]n where HL 1 is C6H5S(O)2NHPO(OCH3)2, see: Moroz et al. (2007 [triangle]). For the synthesis of the ligand, see: Kirsanov & Shevchenko (1954 [triangle]); Oyamada & Morimura (1960 [triangle]). For inter­pretation of coordination polyhedra, see: Porai-Koshits & Aslanov (1972 [triangle]). For bond lengths in similar compounds, see: Sokolov et al. (2007 [triangle]); Sokolnicki et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m397-scheme1.jpg

Experimental

Crystal data

  • [NaNd(C14H21N3O5PS)4]
  • M r = 1664.72
  • Cubic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m397-efi1.jpg
  • a = 22.943 (5) Å
  • V = 12077 (5) Å3
  • Z = 6
  • Mo Kα radiation
  • μ = 0.90 mm−1
  • T = 293 K
  • 0.60 × 0.40 × 0.30 mm

Data collection

  • Oxford Diffraction KM-4 Xcalibur diffractometer with a Sapphire3 detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006 [triangle]) T min = 0.614, T max = 0.774
  • 66051 measured reflections
  • 5883 independent reflections
  • 3713 reflections with I > 2σ(I)
  • R int = 0.113

Refinement

  • R[F 2 > 2σ(F 2)] = 0.095
  • wR(F 2) = 0.178
  • S = 1.42
  • 5883 reflections
  • 174 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 1.17 e Å−3
  • Δρmin = −0.75 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2727 Friedel pairs
  • Flack parameter: 0.05 (3)

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810008214/hb5339sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008214/hb5339Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Lots of bidentate ligands under coordination form closure rings through the donor atoms binding to the same metal. The most used ligands are those derived from that containing oxygen, nitrogen, phosphorus and sulphur atoms (Casas et al., 1995; Amirkhanov et al., 1997; Ly et al., 1998). Such chelates may be used in catalysis (Zazybin et al., 2006), metal extraction (Karande et al., 2003; Morgalyuk et al., 2005), bioinorganic chemistry (Xu et al., 2000). Phosphorylated sulphonylamides of a general view RS(O)2NHP(O)(NR2)2 could be applied for obtaining of lanthanide coordination compounds and presence of sulfono-group oxygen atom as addititious coordination centre gives a challenging opportunity to use them as convenient building blocks for syntheses of bi- and poly-nuclear compounds.

The results of lanthanide compounds investigation with one of the phosphorylated sulphonylamides representative – C6H5S(O)2NHPO(OCH3)2 (HL1) of general formula Na[Ln(L1)4]n were already reported (Moroz et al., 2007).

We now report the synthesis and investigation of tetrakis - complex of the composition {Na[Nd(L)4]}n, (I) (Fig.1), where L- is dimorpholinephenylsulphonylamidophosphate (C6H5S(O)2NPO(NC4H8O)2)-. The synthesis of HL was carried out according to (Oyamada et al., 1960; Kirsanov et al., 1954), using benzenesulfonamide and morpholine.

The molecular structure of title compound contains 1D polymer chain, formed by [Nd(L)4)]- anion and sodium cation as a linker. In complex anions the neodymium atoms have 8-fold coordination environment formed by oxygen atoms of SO2 and PO groups of four bidentate chelate ligands (Fig. 2). According to Porai-Koshits (Porai-Koshits & Aslanov, 1972) the resulting coordination polyhedra can be interpreted as a medium conformation between dodecahedron (δ1 = δ2 = δ3 = δ4 = 29.5 °) and square antiprism (δ1 = δ2 = 0 °; δ3 = δ4 = 52.5 °) for Nd atom (interplanar angles in polyhedra for Nd δ1 = δ2 = 26.2 °; δ3 = δ4 = 51.8 °).

The Nd – O(P) bond lengths (2.376 (4) Å) are shorter than Nd – O(S) (2.532 (4) Å) that can be explained by higher affinity of phosphoryl group to lanthanide ions. The P – O (1.499 (4) Å), N(1) – P (1.613 (6) Å) bond lengths are also comparable with the values observed for similar compounds (Sokolnicki et al., 1998; Sokolov et al., 2007). The average P—N (morpholine substituents) distance (1.628 (7) Å) is larger than P—N(1) bond length in chelate core because of the conjugation in S(O)2NP(O) fragment. The metallocycles are almost flat with a deviation of the N(1) atom from the mean plane defined by the six atoms NdO(1)P(1) N(1)S(1)O(2) of 0.24496 Å.

The bonding of complex anions in polymer structure is provided by Na ions. The Na polyhedron is a distorted tetrahedron, formed by two SO oxygens from different anions.

The crystal structure is unusual: it contains substantial voids (800 Å3) within which there is no evidence for included solvent (Fig. 3). The crystals remained glass-clear being on air.

Experimental

Nd(NO3)37H2O (0.087 g, 1 mmol) was dissolved in 10 ml of i-PrOH and added to 10 ml of a solution of NaL (0.3 g, 4 mmol) in a mixture of methanol and i-PrOH (1:1). After 30 min the precipitate of NaNO3 was filtered off. The resulting clear solution was left for crystallization in a vacuum desiccator. The resulting light violet blocks of (I) were separated by filtration after 48 h, washed with cool i-PrOH (5 ml) and finally dried in air. Yield: 85–90%. IR (KBr pellet, cm-1): 1240, 1030 (s, SO2) and 1140 (s, PO).

Refinement

All hydrogen atoms were located from electron density difference maps and included in the refinement in the riding motion approximation with Uiso constrained to be 1.5 times Ueq of the carrier atom for the methyl groups and 1.2 times Ueq of the carrier atom for the other atoms.

Figures

Fig. 1.
A view of Na[Nd(L)4]n with displacement ellipsoids shown at the 30% probability level. H atoms and morpholine rings have been omitted for clarity.
Fig. 2.
Polyhedror of Nd3+ in (I).
Fig. 3.
Motif of packing of (I) viewed along z (all H atoms are omitted for clarity).

Crystal data

[NaNd(C14H21N3O5PS)4]Mo Kα radiation, λ = 0.71069 Å
Mr = 1664.72Cell parameters from 68542 reflections
Cubic, P43nθ = 2.8–32.1°
a = 22.943 (5) ŵ = 0.90 mm1
V = 12077 (5) Å3T = 293 K
Z = 6Block, light violet
F(000) = 51540.60 × 0.40 × 0.30 mm
Dx = 1.373 Mg m3

Data collection

Oxford Diffraction KM-4 Xcalibur diffractometer with a Sapphire3 detector5883 independent reflections
Radiation source: fine-focus sealed tube3713 reflections with I > 2σ(I)
graphiteRint = 0.113
Detector resolution: 16.1827 pixels mm-1θmax = 30.0°, θmin = 2.8°
ω scansh = −31→32
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006)k = −30→32
Tmin = 0.614, Tmax = 0.774l = −32→32
66051 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.095H-atom parameters constrained
wR(F2) = 0.178w = 1/[σ2(Fo2) + (0.0311P)2 + 27.6297P] where P = (Fo2 + 2Fc2)/3
S = 1.42(Δ/σ)max = 0.053
5883 reflectionsΔρmax = 1.17 e Å3
174 parametersΔρmin = −0.74 e Å3
1 restraintAbsolute structure: Flack (1983), 2727 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.05 (3)

Special details

Experimental. CrysAlis RED, (Oxford Diffraction Ltd., 2007) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Nd10.25000.00000.50000.03890 (11)
Na10.50000.00000.50000.0591 (11)
P10.34264 (7)−0.11150 (8)0.56551 (8)0.0580 (4)
S10.38783 (6)−0.07841 (7)0.45680 (7)0.0542 (4)
C10.3831 (3)−0.1414 (3)0.4113 (3)0.0561 (17)
N10.3939 (2)−0.1001 (3)0.5188 (2)0.0784 (19)
N20.3754 (2)−0.1023 (3)0.6282 (3)0.0907 (14)
N30.3220 (3)−0.1790 (3)0.5648 (4)0.126 (2)
O20.33520 (14)−0.04482 (17)0.44606 (16)0.0497 (10)
O30.44068 (16)−0.0500 (2)0.4378 (2)0.0719 (13)
O10.28838 (15)−0.07562 (17)0.55946 (17)0.0526 (11)
O40.4251 (3)−0.0792 (4)0.7367 (2)0.134 (2)
O50.2927 (4)−0.2972 (3)0.5510 (4)0.163 (3)
C20.4310 (3)−0.1778 (3)0.4091 (3)0.076 (2)
H2A0.4651−0.16990.42960.092*
C30.4246 (4)−0.2277 (3)0.3737 (4)0.108 (3)
H3A0.4562−0.25280.37010.129*
C40.3754 (5)−0.2411 (4)0.3447 (4)0.112 (3)
H4A0.3734−0.27410.32120.135*
C50.3306 (5)−0.2067 (4)0.3505 (4)0.111 (3)
H5A0.2960−0.21670.33210.133*
C60.3325 (4)−0.1552 (3)0.3833 (3)0.079 (2)
H6A0.3000−0.13110.38590.095*
C70.4355 (3)−0.0977 (4)0.6373 (3)0.0907 (14)
H7A0.4509−0.13700.63960.109*
H7B0.4521−0.08000.60260.109*
C80.4565 (5)−0.0675 (5)0.6845 (4)0.134 (2)
H8A0.4546−0.02600.67630.161*
H8B0.4972−0.07760.69030.161*
C90.3442 (3)−0.1124 (4)0.6830 (3)0.0907 (14)
H9A0.3032−0.10360.67780.109*
H9B0.3477−0.15310.69390.109*
C100.3674 (4)−0.0770 (6)0.7282 (4)0.134 (2)
H10A0.3569−0.03680.72010.161*
H10B0.3484−0.08780.76440.161*
C120.2463 (4)−0.2556 (2)0.5500 (5)0.163 (3)
H12A0.2280−0.25350.58800.196*
H12B0.2171−0.26730.52180.196*
C110.2713 (3)−0.1964 (2)0.5334 (5)0.126 (2)
H11A0.2807−0.19690.49220.151*
H11B0.2414−0.16710.53930.151*
C130.3666 (4)−0.2253 (3)0.5699 (5)0.126 (2)
H13A0.3873−0.22880.53320.151*
H13B0.3946−0.21450.59970.151*
C140.3422 (5)−0.2777 (4)0.5838 (6)0.163 (3)
H14A0.3308−0.27610.62450.196*
H14B0.3723−0.30720.58050.196*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Nd10.02596 (19)0.04536 (15)0.04536 (15)0.0000.0000.000
Na10.0368 (17)0.078 (3)0.063 (2)0.0000.0000.000
P10.0465 (8)0.0611 (9)0.0663 (10)0.0090 (8)−0.0157 (8)−0.0007 (8)
S10.0324 (6)0.0678 (9)0.0624 (9)0.0034 (7)−0.0001 (7)−0.0180 (8)
C10.049 (3)0.065 (4)0.055 (3)0.001 (3)0.016 (3)−0.010 (3)
N10.054 (3)0.113 (4)0.069 (4)0.041 (3)−0.004 (3)−0.008 (3)
N20.052 (2)0.154 (4)0.066 (2)−0.005 (3)−0.0010 (19)0.018 (3)
N30.091 (3)0.067 (3)0.219 (6)0.007 (2)−0.064 (3)0.010 (3)
O20.0341 (17)0.059 (2)0.056 (2)−0.0013 (18)0.0033 (18)−0.009 (2)
O30.0338 (19)0.085 (3)0.097 (3)0.001 (2)0.007 (2)−0.027 (3)
O10.0365 (18)0.060 (2)0.061 (2)0.0045 (18)0.0008 (18)0.017 (2)
O40.119 (4)0.212 (5)0.071 (3)−0.029 (4)−0.014 (3)0.000 (3)
O50.194 (6)0.080 (3)0.216 (6)−0.016 (3)−0.067 (5)0.034 (4)
C20.073 (4)0.067 (4)0.090 (5)0.009 (4)0.023 (4)−0.002 (4)
C30.143 (7)0.073 (5)0.106 (6)0.021 (5)0.074 (5)−0.001 (4)
C40.159 (9)0.077 (5)0.100 (6)−0.018 (6)0.034 (6)−0.031 (5)
C50.137 (8)0.106 (6)0.091 (6)−0.034 (6)0.003 (6)−0.041 (5)
C60.086 (5)0.082 (5)0.070 (4)−0.009 (4)−0.007 (4)−0.009 (4)
C70.052 (2)0.154 (4)0.066 (2)−0.005 (3)−0.0010 (19)0.018 (3)
C80.119 (4)0.212 (5)0.071 (3)−0.029 (4)−0.014 (3)0.000 (3)
C90.052 (2)0.154 (4)0.066 (2)−0.005 (3)−0.0010 (19)0.018 (3)
C100.119 (4)0.212 (5)0.071 (3)−0.029 (4)−0.014 (3)0.000 (3)
C120.194 (6)0.080 (3)0.216 (6)−0.016 (3)−0.067 (5)0.034 (4)
C110.091 (3)0.067 (3)0.219 (6)0.007 (2)−0.064 (3)0.010 (3)
C130.091 (3)0.067 (3)0.219 (6)0.007 (2)−0.064 (3)0.010 (3)
C140.194 (6)0.080 (3)0.216 (6)−0.016 (3)−0.067 (5)0.034 (4)

Geometric parameters (Å, °)

Nd1—O1i2.376 (4)O5—C121.429 (10)
Nd1—O1ii2.376 (4)O5—C141.434 (13)
Nd1—O12.376 (4)C2—C31.413 (10)
Nd1—O1iii2.376 (4)C2—H2A0.9300
Nd1—O2ii2.532 (4)C3—C41.345 (13)
Nd1—O22.532 (4)C3—H3A0.9300
Nd1—O2iii2.532 (4)C4—C51.302 (13)
Nd1—O2i2.532 (4)C4—H4A0.9300
Na1—O32.282 (4)C5—C61.400 (11)
Na1—O3iv2.282 (4)C5—H5A0.9300
Na1—O3v2.282 (4)C6—H6A0.9300
Na1—O3ii2.282 (4)C7—C81.374 (12)
Na1—S13.2926 (16)C7—H7A0.9700
Na1—S1v3.2926 (16)C7—H7B0.9700
Na1—S1iv3.2926 (16)C8—H8A0.9700
Na1—S1ii3.2926 (16)C8—H8B0.9700
P1—O11.499 (4)C9—C101.421 (13)
P1—N11.613 (6)C9—H9A0.9700
P1—N31.619 (7)C9—H9B0.9700
P1—N21.637 (7)C10—H10A0.9700
S1—O31.444 (4)C10—H10B0.9700
S1—O21.453 (4)C12—C111.524 (5)
S1—N11.513 (6)C12—H12A0.9700
S1—C11.787 (6)C12—H12B0.9700
C1—C61.365 (10)C11—H11A0.9700
C1—C21.380 (9)C11—H11B0.9700
N2—C71.400 (9)C13—C141.364 (12)
N2—C91.465 (9)C13—H13A0.9700
N3—C111.425 (11)C13—H13B0.9700
N3—C131.478 (10)C14—H14A0.9700
O4—C101.340 (11)C14—H14B0.9700
O4—C81.424 (10)
O1i—Nd1—O1ii97.89 (6)S1—N1—P1127.6 (3)
O1i—Nd1—O197.89 (6)C7—N2—C9111.4 (6)
O1ii—Nd1—O1136.50 (17)C7—N2—P1126.4 (5)
O1i—Nd1—O1iii136.50 (17)C9—N2—P1120.7 (5)
O1ii—Nd1—O1iii97.89 (6)C11—N3—C13113.8 (7)
O1—Nd1—O1iii97.89 (6)C11—N3—P1120.7 (5)
O1i—Nd1—O2ii151.18 (12)C13—N3—P1119.0 (6)
O1ii—Nd1—O2ii72.42 (12)S1—O2—Nd1140.7 (2)
O1—Nd1—O2ii74.32 (13)S1—O3—Na1122.6 (3)
O1iii—Nd1—O2ii72.30 (12)P1—O1—Nd1139.6 (2)
O1i—Nd1—O272.30 (12)C10—O4—C8111.7 (7)
O1ii—Nd1—O274.32 (13)C12—O5—C14112.9 (8)
O1—Nd1—O272.42 (12)C1—C2—C3115.3 (7)
O1iii—Nd1—O2151.18 (12)C1—C2—H2A122.4
O2ii—Nd1—O278.92 (16)C3—C2—H2A122.4
O1i—Nd1—O2iii74.32 (13)C4—C3—C2123.9 (8)
O1ii—Nd1—O2iii151.18 (12)C4—C3—H3A118.1
O1—Nd1—O2iii72.30 (12)C2—C3—H3A118.1
O1iii—Nd1—O2iii72.42 (12)C5—C4—C3118.2 (9)
O2ii—Nd1—O2iii126.59 (10)C5—C4—H4A120.9
O2—Nd1—O2iii126.59 (10)C3—C4—H4A120.9
O1i—Nd1—O2i72.42 (12)C4—C5—C6122.8 (9)
O1ii—Nd1—O2i72.30 (12)C4—C5—H5A118.6
O1—Nd1—O2i151.18 (12)C6—C5—H5A118.6
O1iii—Nd1—O2i74.32 (13)C1—C6—C5118.3 (8)
O2ii—Nd1—O2i126.59 (10)C1—C6—H6A120.8
O2—Nd1—O2i126.59 (10)C5—C6—H6A120.8
O2iii—Nd1—O2i78.92 (16)C8—C7—N2120.1 (8)
O3—Na1—O3iv119.6 (2)C8—C7—H7A107.3
O3—Na1—O3v102.5 (2)N2—C7—H7A107.3
O3iv—Na1—O3v106.8 (2)C8—C7—H7B107.3
O3—Na1—O3ii106.8 (2)N2—C7—H7B107.3
O3iv—Na1—O3ii102.5 (2)H7A—C7—H7B106.9
O3v—Na1—O3ii119.6 (2)C7—C8—O4113.0 (9)
O3—Na1—S121.69 (11)C7—C8—H8A109.0
O3iv—Na1—S1112.32 (11)O4—C8—H8A109.0
O3v—Na1—S1123.55 (12)C7—C8—H8B109.0
O3ii—Na1—S189.82 (10)O4—C8—H8B109.0
O3—Na1—S1v123.55 (12)H8A—C8—H8B107.8
O3iv—Na1—S1v89.82 (10)C10—C9—N2110.7 (7)
O3v—Na1—S1v21.69 (11)C10—C9—H9A109.5
O3ii—Na1—S1v112.32 (11)N2—C9—H9A109.5
S1—Na1—S1v144.97 (6)C10—C9—H9B109.5
O3—Na1—S1iv112.32 (11)N2—C9—H9B109.5
O3iv—Na1—S1iv21.69 (11)H9A—C9—H9B108.1
O3v—Na1—S1iv89.82 (10)O4—C10—C9117.0 (9)
O3ii—Na1—S1iv123.55 (12)O4—C10—H10A108.1
S1—Na1—S1iv113.77 (6)C9—C10—H10A108.1
S1v—Na1—S1iv77.18 (5)O4—C10—H10B108.1
O3—Na1—S1ii89.82 (10)C9—C10—H10B108.1
O3iv—Na1—S1ii123.55 (12)H10A—C10—H10B107.3
O3v—Na1—S1ii112.32 (11)O5—C12—C11108.6 (7)
O3ii—Na1—S1ii21.69 (11)O5—C12—H12A110.0
S1—Na1—S1ii77.18 (5)C11—C12—H12A110.0
S1v—Na1—S1ii113.77 (6)O5—C12—H12B110.0
S1iv—Na1—S1ii144.97 (6)C11—C12—H12B110.0
O1—P1—N1117.1 (3)H12A—C12—H12B108.3
O1—P1—N3106.4 (3)N3—C11—C12115.6 (7)
N1—P1—N3111.2 (4)N3—C11—H11A108.4
O1—P1—N2113.1 (3)C12—C11—H11A108.4
N1—P1—N2103.2 (3)N3—C11—H11B108.4
N3—P1—N2105.4 (4)C12—C11—H11B108.4
O3—S1—O2114.0 (3)H11A—C11—H11B107.5
O3—S1—N1110.8 (3)C14—C13—N3111.6 (8)
O2—S1—N1114.2 (3)C14—C13—H13A109.3
O3—S1—C1103.8 (3)N3—C13—H13A109.3
O2—S1—C1106.2 (3)C14—C13—H13B109.3
N1—S1—C1106.8 (3)N3—C13—H13B109.3
O3—S1—Na135.73 (19)H13A—C13—H13B108.0
O2—S1—Na1114.25 (17)C13—C14—O5118.5 (10)
N1—S1—Na179.9 (2)C13—C14—H14A107.7
C1—S1—Na1131.7 (2)O5—C14—H14A107.7
C6—C1—C2121.4 (6)C13—C14—H14B107.7
C6—C1—S1121.0 (5)O5—C14—H14B107.7
C2—C1—S1117.5 (5)H14A—C14—H14B107.1
O3iv—Na1—S1—O3−114.4 (4)O3—S1—O2—Nd1−121.0 (4)
O3v—Na1—S1—O315.9 (4)N1—S1—O2—Nd17.8 (5)
O3ii—Na1—S1—O3142.1 (2)C1—S1—O2—Nd1125.3 (4)
S1v—Na1—S1—O311.0 (3)Na1—S1—O2—Nd1−81.7 (3)
S1iv—Na1—S1—O3−90.9 (3)O1i—Nd1—O2—S1−126.9 (4)
S1ii—Na1—S1—O3124.3 (3)O1ii—Nd1—O2—S1129.2 (4)
O3—Na1—S1—O2−98.0 (4)O1—Nd1—O2—S1−22.3 (3)
O3iv—Na1—S1—O2147.6 (2)O1iii—Nd1—O2—S151.6 (5)
O3v—Na1—S1—O2−82.1 (2)O2ii—Nd1—O2—S154.6 (3)
O3ii—Na1—S1—O244.1 (2)O2iii—Nd1—O2—S1−73.1 (3)
S1v—Na1—S1—O2−86.97 (18)O2i—Nd1—O2—S1−177.7 (3)
S1iv—Na1—S1—O2171.15 (19)O2—S1—O3—Na198.6 (3)
S1ii—Na1—S1—O226.33 (17)N1—S1—O3—Na1−31.9 (4)
O3—Na1—S1—N1149.9 (4)C1—S1—O3—Na1−146.2 (3)
O3iv—Na1—S1—N135.5 (2)O3iv—Na1—O3—S175.7 (3)
O3v—Na1—S1—N1165.7 (2)O3v—Na1—O3—S1−166.5 (4)
O3ii—Na1—S1—N1−68.0 (2)O3ii—Na1—O3—S1−39.9 (2)
S1v—Na1—S1—N1160.9 (2)S1v—Na1—O3—S1−172.4 (2)
S1iv—Na1—S1—N159.0 (2)S1iv—Na1—O3—S198.4 (3)
S1ii—Na1—S1—N1−85.8 (2)S1ii—Na1—O3—S1−53.7 (3)
O3—Na1—S1—C146.3 (4)N1—P1—O1—Nd1−1.5 (5)
O3iv—Na1—S1—C1−68.1 (3)N3—P1—O1—Nd1−126.5 (5)
O3v—Na1—S1—C162.2 (3)N2—P1—O1—Nd1118.3 (4)
O3ii—Na1—S1—C1−171.6 (3)O1i—Nd1—O1—P186.0 (3)
S1v—Na1—S1—C157.3 (3)O1ii—Nd1—O1—P1−24.3 (3)
S1iv—Na1—S1—C1−44.6 (3)O1iii—Nd1—O1—P1−134.7 (4)
S1ii—Na1—S1—C1170.6 (3)O2ii—Nd1—O1—P1−65.6 (4)
O3—S1—C1—C6−131.8 (6)O2—Nd1—O1—P117.5 (4)
O2—S1—C1—C6−11.2 (6)O2iii—Nd1—O1—P1156.7 (4)
N1—S1—C1—C6111.1 (6)O2i—Nd1—O1—P1153.6 (3)
Na1—S1—C1—C6−157.6 (4)C6—C1—C2—C33.4 (10)
O3—S1—C1—C253.1 (6)S1—C1—C2—C3178.5 (5)
O2—S1—C1—C2173.7 (5)C1—C2—C3—C4−1.8 (12)
N1—S1—C1—C2−64.0 (6)C2—C3—C4—C5−1.3 (14)
Na1—S1—C1—C227.4 (7)C3—C4—C5—C62.9 (14)
O3—S1—N1—P1154.8 (4)C2—C1—C6—C5−2.0 (11)
O2—S1—N1—P124.4 (6)S1—C1—C6—C5−176.9 (6)
C1—S1—N1—P1−92.7 (5)C4—C5—C6—C1−1.4 (13)
Na1—S1—N1—P1136.6 (5)C9—N2—C7—C8−40.8 (12)
O1—P1—N1—S1−28.1 (6)P1—N2—C7—C8153.3 (8)
N3—P1—N1—S194.4 (6)N2—C7—C8—O442.8 (13)
N2—P1—N1—S1−153.0 (5)C10—O4—C8—C7−46.7 (13)
O1—P1—N2—C7−139.0 (7)C7—N2—C9—C1041.8 (11)
N1—P1—N2—C7−11.5 (8)P1—N2—C9—C10−151.4 (7)
N3—P1—N2—C7105.2 (8)C8—O4—C10—C954.2 (13)
O1—P1—N2—C956.4 (8)N2—C9—C10—O4−52.2 (12)
N1—P1—N2—C9−176.2 (7)C14—O5—C12—C1149.2 (12)
N3—P1—N2—C9−59.4 (8)C13—N3—C11—C1245.9 (12)
O1—P1—N3—C1129.9 (9)P1—N3—C11—C12−162.7 (7)
N1—P1—N3—C11−98.7 (8)O5—C12—C11—N3−48.4 (12)
N2—P1—N3—C11150.2 (8)C11—N3—C13—C14−44.0 (14)
O1—P1—N3—C13179.8 (8)P1—N3—C13—C14164.1 (9)
N1—P1—N3—C1351.3 (9)N3—C13—C14—O548.7 (16)
N2—P1—N3—C13−59.9 (9)C12—O5—C14—C13−54.3 (15)

Symmetry codes: (i) −x+1/2, −z+1/2, y+1/2; (ii) x, −y, −z+1; (iii) −x+1/2, z−1/2, −y+1/2; (iv) −x+1, y, −z+1; (v) −x+1, −y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5339).

References

  • Amirkhanov, V. M., Ovchynnikov, V. A., Glowiak, T. & Kozlowski, H. (1997). Z. Naturforsch. Teil B, 52, 1331–1336.
  • Casas, J. S., Castineiras, A., Haiduc, I., Sanchez, A., Sordo, H. & Vazquez-Lopez, E. M. (1995). Polyhedron, 14, 805–809.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Karande, A. P., Mallik, G. K., Panakkal, J. P., Kamath, H. S., Bhargava, V. K. & Mathur, J. N. (2003). J. Radioanal. Nucl. Chem.256, 185–189.
  • Kirsanov, A. & Shevchenko, V. (1954). Zh. Obshch. Khim.24, 474–484.
  • Ly, T. Q. & Woollins, J. D. (1998). Coord. Chem. Rev.176, 451–481.
  • Morgalyuk, V. P., Safiulina, A. M., Tananaev, I. G., Goryunov, E. I., Goryunova, I. B., Molchanova, G. N., Baulina, T. V., Nifant’ev, E. E. & Myasoedov, B. F. (2005). Dokl. Chem.403, 126–128.
  • Moroz, O. V., Shishkina, S. V., Trush, V. A., Sliva, T. Y. & Amirkhanov, V. M. (2007). Acta Cryst. E63, m3175–m3176.
  • Oxford Diffraction (2006). CrysAlis RED and CrysAlis CCD Oxford Diffraction Ltd, Abingdon, England.
  • Oyamada, K. & Morimura, S. (1960). Annu. Rep. Takamine Lab.12, 41.
  • Porai-Koshits, M. & Aslanov, L. (1972). Zh. Strukt. Khim.13, 266–276.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sokolnicki, J., Legendziewicz, J., Amirkhanov, V., Ovchinnikov, V. & Macalik, L. (1998). Spectrochim. Acta, 55, 349–367.
  • Sokolov, F. D., Babashkina, M. G., Safin, D. A., Rakhmatullin, A. I., Fayon, F., Zabirov, N. G., Bolte, M., Brusko, V. V., Galezowska, J. & Kozlowski, H. (2007). Dalton Trans. pp. 4693–4700. [PubMed]
  • Xu, K. & Angell, C. (2000). Inorg. Chim. Acta, 298, 16–23.
  • Zazybin, A., Osipova, O., Khusnutdinova, U., Aristov, I., Solomonov, B., Sokolov, F., Babashkina, M. & Zabirov, N. (2006). J. Molec. Catal. A Chem.253, 234–238.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography