PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o790.
Published online 2010 March 10. doi:  10.1107/S1600536810007774
PMCID: PMC2983776

4-Chloro­anilinium (4-chloro­phen­yl)guanidinium dichloride hemihydrate

Abstract

In the title hydrated molecular salt, C6H7ClN+·C7H9ClN3 +·2Cl·0.5H2O, the water O atom lies on a crystallographic twofold axis. In the crystal, inter­molecular N—H(...)Cl and O—H(...)Cl hydrogen bonds form layers perpendicular to the ac plane in which both the water mol­ecule and the chloride anion are involved in connecting the layers into a three-dimensional structure.

Related literature

For applications of guanidine-containing compounds, see: Yonehara & Otake (1966 [triangle]); Berlinck (1995 [triangle]); Gobbi & Frenking (1993 [triangle]). For related structures, see: Ploug-Sørenson & Andersen 1985 [triangle]; Kolev et al. (1997 [triangle]); Glidewell et al. (2005 [triangle]); Smith et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o790-scheme1.jpg

Experimental

Crystal data

  • C6H7ClN+·C7H9ClN3 +·2Cl·0.5H2O
  • M r = 379.11
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o790-efi1.jpg
  • a = 41.297 (8) Å
  • b = 4.2089 (8) Å
  • c = 23.695 (5) Å
  • β = 120.164 (2)°
  • V = 3560.8 (12) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.67 mm−1
  • T = 298 K
  • 0.51 × 0.50 × 0.34 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.727, T max = 0.805
  • 8167 measured reflections
  • 3078 independent reflections
  • 2495 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.122
  • S = 1.03
  • 3078 reflections
  • 211 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810007774/hg2652sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007774/hg2652Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The guanidine-containing compounds have been employed as anti-microbials and fungicides on a considerable scale(Yonehara & Otake, 1966). The drugs containing guanidine framework are not only easy to transport(Berlinck, 1995), but also make the functions of absorption and osmosis more selective due to the good solubility of their various acid salts in aqueous solution(Gobbi & Frenking, 1993). We report here the cocrystal structure of title compound.

Title compound crystallizes with one 4-chloropenylguanidinium cation , one 4-chloroanilinium cation, two chloride anion and half water molecular in the asymmetric unit (Fig. 1). All bond lengths and angles are normal (Ploug-Sørenson & Andersen, 1985; Kolev et al., 1997; Glidewell et al., 2005; Smith et al., 2005). The forces between cations and anions consist of hydrogen bonding and ion-pairing. Intermolecular N—H···Cl and O—H···Cl hydrogen bonds form layers perpendicular to the ac plane in which both the water molecule and the chloride anion are involved in structure extension (Table 1).

Experimental

The 4-chlorophenylguanidine (0.01 mol) was added to a solution of 4-chlorobenzenamine (0.01 mol) in ethanol (20 ml) and stirred half hour at room temperature. The mixture was adjusted to pH 2-3 with concentrated hydrochloric acid, and the desired products then precipitated, which was collected by filtration. Single crystals suitable for X-ray measurements were obtained by recrystallization from methanol and water (v/v 1:1) at room temperature for one week.

Refinement

Hydrogen atoms bonded to O and 4-chloroanilinium N were located by difference methods and their positional and isotropic displacement parameters were refined but these were constrained in the final refinement cycles. H atoms bonded to C and 4-chlorophenylguanidinium N atoms were treated as riding atoms, with C—H distances of 0.93 Å and N—H distances of 0.86 Å and Uiso(H) values of 1.2Ueq(C,N).

Figures

Fig. 1.
View of the title compound (I), with displacement ellipsoids drawn at the 40% probability level.

Crystal data

C6H7ClN+·C7H9ClN3+·2Cl·0.5H2OF(000) = 1560
Mr = 379.11Dx = 1.414 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2794 reflections
a = 41.297 (8) Åθ = 2.6–24.3°
b = 4.2089 (8) ŵ = 0.67 mm1
c = 23.695 (5) ÅT = 298 K
β = 120.164 (2)°Block, colorless
V = 3560.8 (12) Å30.51 × 0.50 × 0.34 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer3078 independent reflections
Radiation source: fine-focus sealed tube2495 reflections with I > 2σ(I)
graphiteRint = 0.046
[var phi] and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −45→48
Tmin = 0.727, Tmax = 0.805k = −5→4
8167 measured reflectionsl = −27→28

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0657P)2 + 0.9195P] where P = (Fo2 + 2Fc2)/3
3078 reflections(Δ/σ)max = 0.001
211 parametersΔρmax = 0.33 e Å3
1 restraintΔρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.073762 (19)0.49131 (14)0.32708 (3)0.0542 (2)
Cl20.062005 (17)−0.51049 (14)0.49527 (3)0.0496 (2)
Cl30.20900 (2)0.7771 (2)0.72411 (4)0.0787 (3)
Cl40.26245 (2)0.1128 (3)0.59514 (5)0.0943 (3)
O10.00000.9261 (7)0.75000.0535 (6)
H14A−0.0188 (6)0.815 (7)0.7317 (14)0.074 (10)*
N10.06411 (5)1.1656 (6)0.69506 (9)0.0560 (6)
H1A0.06481.17450.73190.067*
N20.02658 (6)1.2676 (6)0.58408 (9)0.0583 (6)
H2A0.00511.32060.55190.070*
H2B0.04501.23240.57770.070*
N30.00277 (6)1.2948 (6)0.65192 (10)0.0614 (6)
H3A−0.01861.34770.61930.074*
H3B0.00551.27770.69020.074*
N40.09760 (8)−0.0049 (7)0.43996 (17)0.0644 (7)
C10.19749 (9)−0.0652 (8)0.48977 (15)0.0711 (8)
H1B0.2122−0.14070.47310.085*
C20.15937 (8)−0.0937 (7)0.45442 (14)0.0649 (7)
H2C0.1480−0.19090.41370.078*
C30.13796 (7)0.0206 (5)0.47893 (13)0.0473 (6)
C40.15458 (8)0.1594 (7)0.53908 (13)0.0604 (7)
H4C0.13990.23530.55570.073*
C50.19272 (8)0.1877 (7)0.57510 (13)0.0649 (7)
H5A0.20400.28200.61610.078*
C60.21393 (8)0.0766 (6)0.55030 (13)0.0569 (7)
C70.16604 (7)0.8951 (6)0.71382 (12)0.0500 (6)
C80.16519 (8)1.0740 (6)0.76169 (13)0.0572 (7)
H8A0.18731.13400.79880.069*
C90.13103 (7)1.1630 (7)0.75378 (12)0.0567 (7)
H9A0.13011.28380.78580.068*
C100.09795 (6)1.0742 (6)0.69845 (11)0.0429 (5)
C110.09949 (7)0.8967 (6)0.65113 (11)0.0482 (6)
H11A0.07750.83640.61370.058*
C120.13380 (7)0.8084 (6)0.65932 (13)0.0522 (6)
H12A0.13480.68860.62730.063*
C130.03129 (7)1.2401 (6)0.64323 (11)0.0455 (6)
H4D0.0856 (16)0.130 (14)0.446 (3)0.17 (2)*
H4B0.0890 (13)−0.130 (12)0.457 (2)0.14 (2)*
H4A0.0872 (15)−0.110 (14)0.400 (3)0.18 (2)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0552 (4)0.0610 (4)0.0393 (4)−0.0094 (3)0.0185 (3)0.0031 (3)
Cl20.0461 (4)0.0655 (4)0.0406 (3)0.0053 (3)0.0243 (3)0.0064 (3)
Cl30.0503 (4)0.1045 (6)0.0858 (6)0.0173 (4)0.0377 (4)0.0099 (5)
Cl40.0518 (5)0.1166 (7)0.0872 (6)−0.0050 (5)0.0146 (4)−0.0111 (5)
O10.0472 (16)0.0582 (16)0.0483 (15)0.0000.0191 (13)0.000
N10.0399 (12)0.0949 (17)0.0320 (10)0.0124 (12)0.0172 (9)0.0028 (11)
N20.0430 (12)0.0954 (17)0.0388 (11)0.0095 (11)0.0223 (10)0.0160 (11)
N30.0434 (12)0.1009 (18)0.0432 (11)0.0155 (12)0.0241 (10)0.0109 (12)
N40.0506 (15)0.0518 (14)0.081 (2)−0.0028 (12)0.0254 (15)0.0001 (14)
C10.0595 (19)0.093 (2)0.0647 (18)−0.0002 (17)0.0344 (16)−0.0173 (17)
C20.0610 (18)0.0809 (19)0.0507 (16)−0.0073 (16)0.0266 (14)−0.0191 (15)
C30.0495 (15)0.0382 (12)0.0510 (14)−0.0007 (10)0.0230 (12)0.0069 (11)
C40.0640 (18)0.0716 (18)0.0497 (15)0.0065 (15)0.0315 (14)−0.0041 (14)
C50.0687 (19)0.0749 (19)0.0416 (14)0.0009 (16)0.0207 (14)−0.0103 (13)
C60.0506 (15)0.0593 (16)0.0502 (15)−0.0015 (13)0.0174 (13)0.0017 (13)
C70.0422 (14)0.0550 (14)0.0540 (15)0.0063 (12)0.0251 (12)0.0086 (13)
C80.0439 (15)0.0668 (17)0.0461 (15)0.0004 (13)0.0116 (12)−0.0033 (13)
C90.0479 (15)0.0759 (18)0.0364 (13)0.0103 (14)0.0137 (12)−0.0065 (13)
C100.0394 (13)0.0513 (13)0.0351 (12)0.0064 (11)0.0167 (11)0.0063 (10)
C110.0423 (14)0.0536 (13)0.0414 (13)−0.0010 (12)0.0155 (11)−0.0049 (11)
C120.0545 (16)0.0547 (15)0.0514 (15)0.0049 (12)0.0295 (13)−0.0057 (12)
C130.0404 (13)0.0579 (14)0.0382 (12)0.0012 (11)0.0197 (11)0.0034 (11)

Geometric parameters (Å, °)

Cl3—C71.738 (2)C1—H1B0.9300
Cl4—C61.740 (3)C2—C31.366 (4)
O1—H14A0.820 (17)C2—H2C0.9300
N1—C131.331 (3)C3—C41.364 (4)
N1—C101.412 (3)C4—C51.369 (4)
N1—H1A0.8600C4—H4C0.9300
N2—C131.320 (3)C5—C61.359 (4)
N2—H2A0.8600C5—H5A0.9300
N2—H2B0.8600C7—C121.359 (4)
N3—C131.314 (3)C7—C81.377 (4)
N3—H3A0.8600C8—C91.379 (4)
N3—H3B0.8600C8—H8A0.9300
N4—C31.448 (4)C9—C101.387 (3)
N4—H4D0.82 (6)C9—H9A0.9300
N4—H4B0.84 (5)C10—C111.375 (3)
N4—H4A0.93 (6)C11—C121.381 (3)
C1—C21.367 (4)C11—H11A0.9300
C1—C61.377 (4)C12—H12A0.9300
C13—N1—C10129.5 (2)C6—C5—C4119.4 (3)
C13—N1—H1A115.2C6—C5—H5A120.3
C10—N1—H1A115.2C4—C5—H5A120.3
C13—N2—H2A120.0C5—C6—C1120.8 (3)
C13—N2—H2B120.0C5—C6—Cl4120.0 (2)
H2A—N2—H2B120.0C1—C6—Cl4119.2 (2)
C13—N3—H3A120.0C12—C7—C8120.8 (2)
C13—N3—H3B120.0C12—C7—Cl3120.0 (2)
H3A—N3—H3B120.0C8—C7—Cl3119.2 (2)
C3—N4—H4D116 (4)C7—C8—C9119.0 (2)
C3—N4—H4B112 (3)C7—C8—H8A120.5
H4D—N4—H4B85 (5)C9—C8—H8A120.5
C3—N4—H4A119 (3)C8—C9—C10120.6 (2)
H4D—N4—H4A120 (5)C8—C9—H9A119.7
H4B—N4—H4A95 (4)C10—C9—H9A119.7
C2—C1—C6119.3 (3)C11—C10—C9119.3 (2)
C2—C1—H1B120.3C11—C10—N1123.5 (2)
C6—C1—H1B120.3C9—C10—N1117.2 (2)
C3—C2—C1120.0 (3)C10—C11—C12119.8 (2)
C3—C2—H2C120.0C10—C11—H11A120.1
C1—C2—H2C120.0C12—C11—H11A120.1
C4—C3—C2120.1 (3)C7—C12—C11120.5 (2)
C4—C3—N4120.8 (3)C7—C12—H12A119.7
C2—C3—N4119.1 (3)C11—C12—H12A119.7
C3—C4—C5120.4 (2)N3—C13—N2119.1 (2)
C3—C4—H4C119.8N3—C13—N1118.3 (2)
C5—C4—H4C119.8N2—C13—N1122.6 (2)
C6—C1—C2—C30.6 (5)C7—C8—C9—C10−0.1 (4)
C1—C2—C3—C4−0.9 (4)C8—C9—C10—C11−0.3 (4)
C1—C2—C3—N4178.4 (3)C8—C9—C10—N1177.9 (2)
C2—C3—C4—C50.5 (4)C13—N1—C10—C11−34.1 (4)
N4—C3—C4—C5−178.8 (3)C13—N1—C10—C9147.8 (3)
C3—C4—C5—C60.1 (4)C9—C10—C11—C120.2 (4)
C4—C5—C6—C1−0.4 (4)N1—C10—C11—C12−177.8 (2)
C4—C5—C6—Cl4179.6 (2)C8—C7—C12—C11−0.4 (4)
C2—C1—C6—C50.0 (5)Cl3—C7—C12—C11179.0 (2)
C2—C1—C6—Cl4−180.0 (2)C10—C11—C12—C70.1 (4)
C12—C7—C8—C90.4 (4)C10—N1—C13—N3174.8 (3)
Cl3—C7—C8—C9−179.0 (2)C10—N1—C13—N2−6.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H14A···Cl1i0.82 (2)2.36 (2)3.1797 (17)177 (3)
N2—H2A···Cl2i0.862.543.324 (2)152
N3—H3A···Cl2i0.862.483.281 (2)155
N4—H4D···Cl2ii0.82 (6)2.39 (5)3.185 (3)164 (5)
N2—H2B···Cl2iii0.862.623.2457 (19)131
N4—H4A···Cl1iv0.93 (6)2.27 (6)3.158 (3)160 (5)
N1—H1A···Cl1v0.862.523.283 (2)148

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y+1, z; (iii) x, y+2, z; (iv) x, y−1, z; (v) x, −y+2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2652).

References

  • Berlinck, R. G. S. (1995). Prog. Chem. Org. Nat. Prod.66, 119–295. [PubMed]
  • Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o276–o280. [PubMed]
  • Gobbi, M. & Frenking, G. (1993). J. Am. Chem. Soc.115, 2362–2372.
  • Kolev, Ts., Stahl, R., Preut, H., Bleckmann, P. & Radomirska, V. (1997). Z. Kristallogr. New Cryst. Struct.212, 415–416.
  • Ploug-Sørenson, G. & Andersen, E. K. (1985). Acta Cryst. C41, 613–615.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, G., Wermuth, U. D. & White, J. M. (2005). Acta Cryst. C61, o105–o109. [PubMed]
  • Yonehara, H. & Otake, N. (1966). Tetrahedron Lett.32, 3785–3791.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography