PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m368.
Published online 2010 March 6. doi:  10.1107/S1600536810007749
PMCID: PMC2983770

Poly[(dimethyl­formamide)(μ4-2,2′-sulfanediyldibenzoato)nickel(II)]

Abstract

The title centrosymmetric dinuclear NiII complex, [Ni(C14H8O4S)(C3H7NO)]n, was prepared via reaction of Ni(NO3)2·6H2O and thio­salicylic acid, with H2O and dimethyl­formamide (DMF) as the mixed solvent. The central NiII ion is five-coordinated by five O atoms from DMF and from the carboxyl­ate groups of the organic ligand. The symmetry-related coordination polyhedra inter­link into centrosymmetric dimeric units and these, in turn, are linked into infinite chains propagating parallel to [100].

Related literature

For high-dimensional coordination polymers, see: Li et al. (2009 [triangle], 2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m368-scheme1.jpg

Experimental

Crystal data

  • [Ni(C14H8O4S)(C3H7NO)]
  • M r = 808.12
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m368-efi1.jpg
  • a = 8.5196 (2) Å
  • b = 10.5240 (2) Å
  • c = 11.0138 (3) Å
  • α = 67.241 (1)°
  • β = 79.0410 (11)°
  • γ = 71.796 (1)°
  • V = 862.33 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.27 mm−1
  • T = 298 K
  • 0.30 × 0.25 × 0.19 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.701, T max = 0.794
  • 11190 measured reflections
  • 3350 independent reflections
  • 2553 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.079
  • S = 1.01
  • 3350 reflections
  • 228 parameters
  • H-atom parameters constrained
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810007749/bg2334sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007749/bg2334Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The project was supported by the Science Foundation of North University of China.

supplementary crystallographic information

Comment

Organic carboxylates as ligands attract much attention not only because of versatile coordination modes but also owing to their ability to facilitate the formation of high-dimensional coordination polymers (Li et al., 2009; Li et al., 2010). One such example, namely, thiosalicylic acid, is a semi-rigid, multidentate ligand that can provide up to four donor atoms with variable coordination modes. Unlike the imidazole-4,5-dicarboxylic acid and benzimidazole-5,6-dicarboxylic acid with nitrogen and oxygen coordinated dots, the thiosalicylic acid only has oxygen coordinated dot. So it can form low-dimensional compound. This is therefore considered as an excellent candidate for generating one-dimensional compound with chain structure.

In the title complex, the NiII atom is coordinated by one oxygen atom from one DMF ligand and four oxygen atoms from the thiosalicylic acid carboxylates, giving a centrosymmetric dimeric structure with a Ni···Ni distance of 2.6374 (7) Å (Fig. 1). A one-dimensional infinite chain is formed due to the bidentate bridging mode shown by all the thiosalicylic acid carboxylates (Fig. 2). The Ni—O bond distances vary from 1.947 (2) Å to 2.129 (2) Å. The O—Ni—O angles are in the range of 88.16 (9) to 168.24 (8) °. As far as we know, examples of dinuclear NiII complex bridged by thiosalicylic acid and DMF have not been characterized so far.

Experimental

A solution obtained by dissolving 0.145 g (0.5 mmol) Ni(NO3)2.6H2O in 4 ml DMF and 10 ml H2O was added. The mixture was stirred until complete dissolution. To the stirred solution was added equimolar quantities 0.136 g (0.5 mmol) thiosalicylic acid. The green solution was then under 160 °C for 72 h in a 23 ml Teflon-lined stainless-steel autoclave. Afterthe reaction, the bomb was cooled to room temperature in a rate of 5 °C per hour. Green prismatic crystals were collected and dried in air. Yield: ca.82 % on the basis of Ni.

Refinement

All H atoms were positioned in calculated positions, with C—H distances of 0.93 and 0.96 Å,and with Uiso~(H) = 1.2 or 1.5 Ueq~(C).

Figures

Fig. 1.
Displacement ellipsoid plot (40% probability level) of the title compound(I), with atom numbering of structurally unique non-H.
Fig. 2.
The packing diagram of the title compound (I).

Crystal data

[Ni(C14H8O4S)(C3H7NO)]Z = 1
Mr = 808.12F(000) = 416
Triclinic, P1Dx = 1.556 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5196 (2) ÅCell parameters from 2701 reflections
b = 10.5240 (2) Åθ = 2.4–22.3°
c = 11.0138 (3) ŵ = 1.27 mm1
α = 67.241 (1)°T = 298 K
β = 79.0410 (11)°Block, green
γ = 71.796 (1)°0.30 × 0.25 × 0.19 mm
V = 862.33 (3) Å3

Data collection

Bruker APEXII area-detector diffractometer3350 independent reflections
Radiation source: fine-focus sealed tube2553 reflections with I > 2σ(I)
graphiteRint = 0.035
[var phi] and ω scanθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −9→10
Tmin = 0.701, Tmax = 0.794k = −12→12
11190 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0295P)2 + 0.4P] where P = (Fo2 + 2Fc2)/3
3350 reflections(Δ/σ)max = 0.001
228 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.37381 (4)0.57945 (3)0.55076 (3)0.03249 (12)
S1−0.02998 (9)0.75102 (9)0.29878 (7)0.0481 (2)
O10.2572 (2)0.5904 (2)0.40641 (19)0.0499 (5)
O20.4743 (3)0.4593 (2)0.3200 (2)0.0551 (6)
O3−0.3145 (3)0.5998 (2)0.33626 (19)0.0501 (5)
O4−0.5286 (2)0.7322 (2)0.4242 (2)0.0521 (5)
O50.1675 (3)0.7125 (2)0.6255 (2)0.0547 (6)
N1−0.1056 (3)0.8241 (3)0.6247 (3)0.0535 (7)
C10.3275 (4)0.5360 (3)0.3199 (3)0.0417 (7)
C20.2315 (3)0.5674 (3)0.2057 (3)0.0381 (6)
C30.3089 (4)0.5029 (3)0.1132 (3)0.0501 (8)
H30.41260.43800.12810.060*
C40.2369 (4)0.5317 (4)0.0004 (3)0.0561 (8)
H40.29220.4894−0.06140.067*
C50.0810 (4)0.6248 (3)−0.0189 (3)0.0553 (8)
H50.03080.6456−0.09480.066*
C6−0.0010 (4)0.6872 (3)0.0722 (3)0.0494 (8)
H6−0.10720.74770.05820.059*
C70.0723 (3)0.6616 (3)0.1858 (3)0.0411 (7)
C8−0.2076 (4)0.8749 (3)0.2161 (3)0.0429 (7)
C9−0.1898 (4)1.0066 (3)0.1271 (3)0.0571 (9)
H9−0.08551.02350.10770.069*
C10−0.3225 (5)1.1122 (4)0.0670 (3)0.0665 (10)
H10−0.30771.19930.00690.080*
C11−0.4766 (4)1.0887 (3)0.0962 (3)0.0620 (9)
H11−0.56681.15950.05500.074*
C12−0.4984 (4)0.9601 (3)0.1866 (3)0.0529 (8)
H12−0.60390.94550.20690.063*
C13−0.3648 (3)0.8520 (3)0.2478 (3)0.0388 (7)
C14−0.4029 (4)0.7160 (3)0.3450 (3)0.0399 (7)
C150.0244 (4)0.7207 (3)0.6097 (3)0.0472 (7)
H150.00700.65070.58590.057*
C16−0.2706 (4)0.8325 (4)0.5980 (4)0.0821 (12)
H16A−0.26470.75450.57090.123*
H16B−0.31150.92130.52890.123*
H16C−0.34400.82710.67650.123*
C17−0.0867 (4)0.9353 (4)0.6631 (4)0.0730 (11)
H17A0.02790.93560.64980.110*
H17B−0.12390.91770.75460.110*
H17C−0.15151.02640.61030.110*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0266 (2)0.0328 (2)0.0312 (2)−0.00384 (15)−0.00182 (14)−0.00739 (15)
S10.0385 (5)0.0590 (5)0.0440 (4)−0.0096 (4)−0.0055 (3)−0.0165 (4)
O10.0380 (12)0.0645 (14)0.0418 (12)−0.0035 (11)−0.0075 (9)−0.0189 (11)
O20.0390 (13)0.0620 (14)0.0583 (14)0.0012 (11)−0.0136 (10)−0.0217 (11)
O30.0488 (13)0.0383 (12)0.0507 (13)−0.0109 (10)0.0077 (10)−0.0083 (10)
O40.0458 (13)0.0440 (12)0.0561 (13)−0.0135 (10)0.0116 (11)−0.0125 (10)
O50.0396 (13)0.0615 (14)0.0619 (14)−0.0011 (11)−0.0042 (11)−0.0302 (12)
N10.0392 (16)0.0548 (17)0.0596 (17)−0.0016 (13)−0.0001 (13)−0.0230 (14)
C10.0382 (18)0.0402 (17)0.0422 (17)−0.0145 (15)−0.0034 (14)−0.0062 (14)
C20.0373 (17)0.0401 (16)0.0344 (15)−0.0146 (14)−0.0054 (12)−0.0058 (13)
C30.0479 (19)0.0488 (19)0.0492 (19)−0.0120 (16)−0.0056 (15)−0.0124 (16)
C40.059 (2)0.066 (2)0.0479 (19)−0.0171 (19)−0.0054 (16)−0.0247 (17)
C50.064 (2)0.061 (2)0.0452 (18)−0.0191 (19)−0.0137 (16)−0.0157 (17)
C60.0444 (19)0.056 (2)0.0467 (18)−0.0127 (16)−0.0133 (15)−0.0122 (16)
C70.0380 (17)0.0432 (17)0.0398 (16)−0.0177 (14)−0.0025 (13)−0.0068 (13)
C80.0430 (18)0.0410 (17)0.0387 (16)−0.0096 (14)−0.0039 (13)−0.0084 (14)
C90.056 (2)0.055 (2)0.055 (2)−0.0266 (18)0.0023 (17)−0.0072 (17)
C100.075 (3)0.044 (2)0.060 (2)−0.018 (2)−0.001 (2)0.0035 (17)
C110.059 (2)0.0440 (19)0.057 (2)0.0006 (17)−0.0058 (18)−0.0013 (16)
C120.0407 (19)0.0497 (19)0.055 (2)−0.0071 (16)−0.0006 (15)−0.0090 (16)
C130.0368 (17)0.0370 (16)0.0371 (16)−0.0094 (14)0.0002 (13)−0.0088 (13)
C140.0338 (17)0.0419 (18)0.0397 (16)−0.0105 (14)−0.0036 (13)−0.0090 (14)
C150.048 (2)0.0482 (19)0.0381 (17)−0.0065 (16)0.0032 (15)−0.0155 (15)
C160.045 (2)0.111 (3)0.092 (3)−0.013 (2)−0.004 (2)−0.044 (3)
C170.060 (2)0.064 (2)0.094 (3)−0.0011 (19)0.003 (2)−0.042 (2)

Geometric parameters (Å, °)

Ni1—O2i1.947 (2)C5—C61.373 (4)
Ni1—O4ii1.9695 (19)C5—H50.9300
Ni1—O3iii1.9751 (19)C6—C71.400 (4)
Ni1—O11.9790 (19)C6—H60.9300
Ni1—O52.129 (2)C8—C91.389 (4)
Ni1—Ni1i2.6374 (6)C8—C131.390 (4)
S1—C71.781 (3)C9—C101.371 (4)
S1—C81.786 (3)C9—H90.9300
O1—C11.259 (3)C10—C111.368 (5)
O2—C11.258 (3)C10—H100.9300
O3—C141.249 (3)C11—C121.379 (4)
O4—C141.258 (3)C11—H110.9300
O5—C151.236 (3)C12—C131.391 (4)
N1—C151.325 (4)C12—H120.9300
N1—C171.450 (4)C13—C141.507 (4)
N1—C161.460 (4)C15—H150.9300
C1—C21.504 (4)C16—H16A0.9600
C2—C31.391 (4)C16—H16B0.9600
C2—C71.405 (4)C16—H16C0.9600
C3—C41.375 (4)C17—H17A0.9600
C3—H30.9300C17—H17B0.9600
C4—C51.379 (4)C17—H17C0.9600
C4—H40.9300
O2i—Ni1—O4ii90.48 (9)C7—C6—H6119.4
O2i—Ni1—O3iii88.17 (9)C6—C7—C2118.1 (3)
O4ii—Ni1—O3iii168.24 (8)C6—C7—S1120.9 (2)
O2i—Ni1—O1168.07 (8)C2—C7—S1121.0 (2)
O4ii—Ni1—O189.02 (9)C9—C8—C13118.9 (3)
O3iii—Ni1—O189.89 (8)C9—C8—S1117.6 (2)
O2i—Ni1—O597.16 (8)C13—C8—S1123.1 (2)
O4ii—Ni1—O597.19 (8)C10—C9—C8121.5 (3)
O3iii—Ni1—O594.56 (8)C10—C9—H9119.2
O1—Ni1—O594.73 (8)C8—C9—H9119.2
O2i—Ni1—Ni1i84.58 (6)C11—C10—C9119.6 (3)
O4ii—Ni1—Ni1i81.54 (6)C11—C10—H10120.2
O3iii—Ni1—Ni1i86.70 (6)C9—C10—H10120.2
O1—Ni1—Ni1i83.56 (6)C10—C11—C12120.1 (3)
O5—Ni1—Ni1i177.88 (6)C10—C11—H11120.0
C7—S1—C8102.75 (13)C12—C11—H11120.0
C1—O1—Ni1123.11 (19)C11—C12—C13120.9 (3)
C1—O2—Ni1i123.63 (19)C11—C12—H12119.6
C14—O3—Ni1iii119.78 (18)C13—C12—H12119.6
C14—O4—Ni1iv125.92 (19)C8—C13—C12119.0 (3)
C15—O5—Ni1120.6 (2)C8—C13—C14124.6 (3)
C15—N1—C17120.9 (3)C12—C13—C14116.4 (2)
C15—N1—C16120.9 (3)O3—C14—O4126.0 (3)
C17—N1—C16118.2 (3)O3—C14—C13118.5 (2)
O2—C1—O1124.9 (3)O4—C14—C13115.4 (3)
O2—C1—C2117.1 (3)O5—C15—N1123.4 (3)
O1—C1—C2118.0 (3)O5—C15—H15118.3
C3—C2—C7119.1 (3)N1—C15—H15118.3
C3—C2—C1117.4 (3)N1—C16—H16A109.5
C7—C2—C1123.5 (3)N1—C16—H16B109.5
C4—C3—C2122.1 (3)H16A—C16—H16B109.5
C4—C3—H3118.9N1—C16—H16C109.5
C2—C3—H3118.9H16A—C16—H16C109.5
C3—C4—C5118.5 (3)H16B—C16—H16C109.5
C3—C4—H4120.7N1—C17—H17A109.5
C5—C4—H4120.7N1—C17—H17B109.5
C6—C5—C4120.9 (3)H17A—C17—H17B109.5
C6—C5—H5119.6N1—C17—H17C109.5
C4—C5—H5119.6H17A—C17—H17C109.5
C5—C6—C7121.2 (3)H17B—C17—H17C109.5
C5—C6—H6119.4

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x, −y+1, −z+1; (iv) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2334).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Li, Z.-Y., Dai, J.-W., Qiu, H.-H., Yue, S.-T. & Liu, Y.-L. (2010). Inorg. Chem. Commun.13, 452–455.
  • Li, Z., Dai, J. & Yue, S. (2009). Acta Cryst. E65, m775. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography