PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o911–o912.
Published online 2010 March 24. doi:  10.1107/S1600536810010378
PMCID: PMC2983768

2-Methyl-N-p-tolyl­benzamide: a second monoclinic polymorph

Abstract

The title compound, C15H15NO, (I), is a polymorph of the structure (II) reported by Gowda et al. [Acta Cryst. (2008), E64, o1494]. Compound (II) crystalllizes in the space group C2/c (Z = 8), whereas the title compound occurs in space group P21/c (Z = 4). The two mol­ecular structures differ slightly in the relative orientations of their central amide group with respect to the benzoyl ring [dihedral angles of 55.99 (7) for (I) and 59.96 (11)° for (II)] and in the inclination of the benzoyl and aniline rings [88.67 (8) for (I) and 81.44 (5)° for (II)]. In the crystal structure of (I), mol­ecules are linked by N—H(...)O hydrogen bonds, forming C(4) chains, which are augmented by weak C—H(...)O inter­actions. The structure is further stabilized by C—H(...)π contacts involving both of the aromatic rings.

Related literature

For the biological activity of N-substituted benzamides, see: Olsson et al. (2002 [triangle]); Lindgren et al. (2001 [triangle]). For the use of heterocyclic analogs of benzanilide derivatives as potassium channel activators, see: Calderone et al. (2006 [triangle]). For the use of 2-nitro­benzamides in organic synthesis, see: Zhichkin et al. (2007 [triangle]); Beccalli et al. (2005 [triangle]). For the original monoclinic polymorph, see: Gowda et al. (2008 [triangle]). For the related N-(2,4-dimethyl­phen­yl)-2-methyl­benzamide, see: Gowda et al. (2009 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o911-scheme1.jpg

Experimental

Crystal data

  • C15H15NO
  • M r = 225.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o911-efi1.jpg
  • a = 20.259 (3) Å
  • b = 7.0681 (10) Å
  • c = 8.7941 (13) Å
  • β = 95.942 (9)°
  • V = 1252.5 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 89 K
  • 0.30 × 0.19 × 0.06 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2006 [triangle]) T min = 0.803, T max = 1.000
  • 8447 measured reflections
  • 1283 independent reflections
  • 1028 reflections with I > 2σ(I)
  • R int = 0.052
  • θmax = 20.7°

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.108
  • S = 1.07
  • 1283 reflections
  • 159 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) and TITAN2000 (Hunter & Simpson, 1999 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and Mercury (Macrae et al., 2008 [triangle]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004 [triangle]), PLATON (Spek, 2009 [triangle]) and publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810010378/hb5364sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010378/hb5364Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge a research grant from the Higher Education Commission of Pakistan, project No.20-Miscel/R&D/00/3834. We also thank the University of Otago for the purchase of the diffractometer.

supplementary crystallographic information

Comment

N-substituted benzamides are well known anticancer compounds and the mechanism of action for N-substituted benzamide-induced apoptosis has been studied, using declopramide as a lead compound (Olsson et al., 2002). N-substituted benzamides inhibit the activity of nuclear factor- B and nuclear factor T cell activity while inducing activator protein 1 activity in T lymphocytes (Lindgren et al., 2001). Heterocyclic analogs of benzanilide derivatives are potassium channel activators (Calderone et al., 2006). N-alkylated 2-nitrobenzamides are intermediates in the synthesis of dibenzo[b,e][1,4]diazepines (Zhichkin et al., 2007) and N-acyl-2-nitrobenzamides are precursors of 2,3-disubstitued 3H-quinazoline-4-ones (Beccalli et al., 2005).

The title compound, (I), is a second monoclinic polymorph of the structure of this benzamide derivative which crystallises in the space group P21/c. An alternative structure, II, in the space group C2/c was reported previously by Gowda et al., (2008). The major structural differences between the two polymorphs lie in the orientations of their central C2,C1,O1,N1,C8 amide groups with respect to the C2···C6 benzoyl ring. In I the N1–C1–C2–C7 dihedral angle is 55.69 (3) for (I) whereas for (II) it is -60.69 (18). Furthermore the angle between the plane through C2,C1,O1,N1,C8 and the C2···C6 ring plane is 55.99 (7)/% in (I) but 59.96 (11) for (II) and the two phenyl rings are respectively inclined at 88.67 (8)/% for (I) and 81.44 (5)/% for (II). Bond distances in the molecule are normal and comparable to those in the second polymorph and in a closely related benzamide derivative (Gowda et al., 2009).

In the crystal structure intermolecular N1–H1···O1 hydrogen bonds form C(4) chains down the c axis (Bernstein et al. 1995). These chains are further stabilised by weak C9–H9···O1 interactions and C–H···π contacts involving both the aniline and benzoyl ring systems.

Experimental

2-Methylbenzoyl chloride (1 mmol) in CHCl3 was treated with 4-methylaniline (3.5 mmol) under a nitrogen atmosphere at reflux for 3.5 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with 1 M aq HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue from ethanol afforded colourless plates of (I) in 78% yield: Anal. calcd. for C15H25NO: C, 79.97; H, 6.71; N, 6.22; found: C, 80.06; H, 6.87; N, 6.01%

Refinement

The H atom bound to N1 was located in a difference map and refined isotropically. All other H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso = 1.2Ueq (C) for aromatic and d(C—H) = 0.98 Å, Uiso = 1.5Ueq (C) for methyl C atoms. Crystals were very thin and weakly diffracting. Even with 60 s scans over 24 h, no useful data was observed beyond theta = 20.71 °.

Figures

Fig. 1.
The structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
Fig. 2.
Crystal packing for (I) viewed down the b axis with hydrogen bonds drawn as dashed lines and C—H···π interactions drawn as dotted lines. The blue and yellow spheres represent centroids of the benzene rings.

Crystal data

C15H15NOF(000) = 480
Mr = 225.28Dx = 1.195 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1469 reflections
a = 20.259 (3) Åθ = 3.1–20.2°
b = 7.0681 (10) ŵ = 0.08 mm1
c = 8.7941 (13) ÅT = 89 K
β = 95.942 (9)°Rectangular plate, colourless
V = 1252.5 (3) Å30.30 × 0.19 × 0.06 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer1283 independent reflections
Radiation source: fine-focus sealed tube1028 reflections with I > 2σ(I)
graphiteRint = 0.052
ω scansθmax = 20.7°, θmin = 1.0°
Absorption correction: multi-scan (SADABS; Bruker, 2006)h = −20→20
Tmin = 0.803, Tmax = 1.000k = −7→7
8447 measured reflectionsl = −8→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0571P)2 + 0.3937P] where P = (Fo2 + 2Fc2)/3
1283 reflections(Δ/σ)max = 0.002
159 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.73575 (10)0.2686 (3)0.6898 (2)0.0250 (6)
H1N0.7455 (11)0.297 (3)0.789 (3)0.030*
O10.76424 (8)0.0912 (2)0.48978 (19)0.0301 (5)
C10.77164 (12)0.1340 (3)0.6268 (3)0.0231 (7)
C20.82221 (12)0.0392 (3)0.7367 (3)0.0207 (7)
C30.88871 (13)0.0342 (3)0.7074 (3)0.0232 (7)
C310.91234 (13)0.1250 (4)0.5675 (3)0.0327 (7)
H31A0.89430.05570.47600.049*
H31B0.96090.12170.57530.049*
H31C0.89720.25670.56020.049*
C40.93384 (13)−0.0562 (3)0.8148 (3)0.0269 (7)
H40.9795−0.05970.79880.032*
C50.91342 (14)−0.1405 (3)0.9437 (3)0.0302 (7)
H50.9450−0.20131.01490.036*
C60.84744 (13)−0.1368 (3)0.9697 (3)0.0285 (7)
H60.8334−0.19611.05790.034*
C70.80182 (12)−0.0460 (3)0.8663 (3)0.0239 (7)
H70.7564−0.04190.88400.029*
C80.68730 (12)0.3892 (4)0.6124 (3)0.0230 (7)
C90.68482 (12)0.5755 (4)0.6619 (3)0.0278 (7)
H90.71460.61790.74550.033*
C100.63886 (13)0.6993 (4)0.5893 (3)0.0330 (7)
H100.63810.82700.62280.040*
C110.59398 (13)0.6409 (4)0.4687 (3)0.0327 (8)
C1110.54250 (14)0.7756 (4)0.3928 (3)0.0466 (9)
H11A0.52370.72230.29490.070*
H11B0.56340.89750.37510.070*
H11C0.50710.79390.45940.070*
C120.59739 (13)0.4542 (4)0.4208 (3)0.0345 (8)
H120.56770.41160.33700.041*
C130.64310 (12)0.3286 (4)0.4923 (3)0.0285 (7)
H130.64400.20090.45880.034*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0360 (14)0.0248 (14)0.0135 (12)0.0036 (11)−0.0006 (11)−0.0010 (11)
O10.0457 (12)0.0259 (11)0.0182 (12)0.0017 (9)0.0006 (9)−0.0010 (8)
C10.0349 (17)0.0173 (16)0.0170 (17)−0.0079 (13)0.0029 (13)−0.0008 (12)
C20.0319 (17)0.0133 (14)0.0163 (15)0.0013 (12)−0.0004 (13)−0.0022 (12)
C30.0354 (18)0.0108 (14)0.0232 (16)0.0002 (12)0.0020 (13)−0.0042 (12)
C310.0396 (17)0.0253 (17)0.0341 (17)−0.0008 (13)0.0079 (13)0.0024 (13)
C40.0317 (16)0.0177 (16)0.0309 (18)0.0009 (12)0.0015 (13)−0.0073 (13)
C50.042 (2)0.0206 (16)0.0259 (18)0.0066 (13)−0.0043 (14)−0.0010 (13)
C60.046 (2)0.0204 (16)0.0196 (16)0.0028 (13)0.0045 (14)0.0034 (12)
C70.0310 (16)0.0193 (15)0.0214 (16)0.0020 (12)0.0018 (13)−0.0006 (12)
C80.0278 (15)0.0261 (17)0.0154 (15)0.0022 (13)0.0034 (13)0.0045 (13)
C90.0325 (16)0.0289 (18)0.0217 (16)0.0044 (13)0.0020 (13)−0.0007 (13)
C100.0418 (18)0.0284 (17)0.0299 (17)0.0083 (14)0.0088 (15)0.0023 (14)
C110.0317 (17)0.040 (2)0.0267 (17)0.0069 (14)0.0062 (14)0.0112 (14)
C1110.0442 (19)0.054 (2)0.0430 (19)0.0141 (16)0.0079 (15)0.0182 (16)
C120.0324 (17)0.043 (2)0.0271 (17)−0.0043 (14)−0.0004 (13)0.0054 (14)
C130.0330 (16)0.0273 (17)0.0252 (17)−0.0013 (14)0.0020 (14)0.0045 (13)

Geometric parameters (Å, °)

N1—C11.351 (3)C6—H60.9500
N1—C81.420 (3)C7—H70.9500
N1—H1N0.90 (3)C8—C131.380 (3)
O1—C11.236 (3)C8—C91.389 (3)
C1—C21.493 (3)C9—C101.385 (3)
C2—C71.389 (3)C9—H90.9500
C2—C31.398 (3)C10—C111.387 (4)
C3—C41.399 (3)C10—H100.9500
C3—C311.509 (4)C11—C121.389 (4)
C31—H31A0.9800C11—C1111.515 (4)
C31—H31B0.9800C111—H11A0.9800
C31—H31C0.9800C111—H11B0.9800
C4—C51.381 (4)C111—H11C0.9800
C4—H40.9500C12—C131.386 (4)
C5—C61.380 (4)C12—H120.9500
C5—H50.9500C13—H130.9500
C6—C71.386 (3)
C1—N1—C8126.9 (2)C6—C7—C2120.3 (2)
C1—N1—H1N118.9 (16)C6—C7—H7119.8
C8—N1—H1N113.8 (16)C2—C7—H7119.8
O1—C1—N1123.8 (2)C13—C8—C9119.5 (2)
O1—C1—C2121.8 (2)C13—C8—N1122.8 (2)
N1—C1—C2114.4 (2)C9—C8—N1117.7 (2)
C7—C2—C3121.0 (2)C10—C9—C8119.9 (2)
C7—C2—C1118.9 (2)C10—C9—H9120.0
C3—C2—C1120.1 (2)C8—C9—H9120.0
C2—C3—C4117.5 (2)C9—C10—C11121.4 (3)
C2—C3—C31122.2 (2)C9—C10—H10119.3
C4—C3—C31120.3 (2)C11—C10—H10119.3
C3—C31—H31A109.5C10—C11—C12117.8 (2)
C3—C31—H31B109.5C10—C11—C111121.1 (3)
H31A—C31—H31B109.5C12—C11—C111121.1 (3)
C3—C31—H31C109.5C11—C111—H11A109.5
H31A—C31—H31C109.5C11—C111—H11B109.5
H31B—C31—H31C109.5H11A—C111—H11B109.5
C5—C4—C3121.4 (2)C11—C111—H11C109.5
C5—C4—H4119.3H11A—C111—H11C109.5
C3—C4—H4119.3H11B—C111—H11C109.5
C6—C5—C4120.4 (2)C13—C12—C11121.5 (2)
C6—C5—H5119.8C13—C12—H12119.2
C4—C5—H5119.8C11—C12—H12119.2
C5—C6—C7119.4 (2)C8—C13—C12119.9 (3)
C5—C6—H6120.3C8—C13—H13120.0
C7—C6—H6120.3C12—C13—H13120.0
C8—N1—C1—O1−3.8 (4)C3—C2—C7—C60.4 (3)
C8—N1—C1—C2175.9 (2)C1—C2—C7—C6179.3 (2)
O1—C1—C2—C7−124.6 (3)C1—N1—C8—C1338.7 (4)
N1—C1—C2—C755.7 (3)C1—N1—C8—C9−141.7 (2)
O1—C1—C2—C354.3 (3)C13—C8—C9—C10−0.9 (4)
N1—C1—C2—C3−125.4 (2)N1—C8—C9—C10179.4 (2)
C7—C2—C3—C4−1.3 (3)C8—C9—C10—C111.1 (4)
C1—C2—C3—C4179.8 (2)C9—C10—C11—C12−1.2 (4)
C7—C2—C3—C31179.9 (2)C9—C10—C11—C111178.2 (2)
C1—C2—C3—C311.0 (3)C10—C11—C12—C131.2 (4)
C2—C3—C4—C51.1 (3)C111—C11—C12—C13−178.1 (2)
C31—C3—C4—C5−180.0 (2)C9—C8—C13—C121.0 (4)
C3—C4—C5—C6−0.2 (4)N1—C8—C13—C12−179.4 (2)
C4—C5—C6—C7−0.7 (4)C11—C12—C13—C8−1.1 (4)
C5—C6—C7—C20.6 (4)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C3–C7 and C8–C13 benzene rings, repectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.90 (3)1.94 (3)2.821 (3)169 (2)
C9—H9···O1i0.952.713.366 (3)127
C7—H7···Cg2ii0.952.843.751 (3)160
C31—H31C···Cg1iii0.982.863.676 (3)141

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−3/2; (iii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5364).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Beccalli, E. M., Broggini, G., Paladinoa, G. & Zonia, C. (2005). Tetrahedron, 61, 61–68.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Calderone, V., Fiamingo, F. L., Giorgi, I., Leonardi, M., Livi, O., Martelli, A. & Martinotti, E. (2006). Eur. J. Med. Chem.41, 761–767. [PubMed]
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Rodrigues, V. Z. & Fuess, H. (2009). Acta Cryst. E65, o826. [PMC free article] [PubMed]
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1494. [PMC free article] [PubMed]
  • Hunter, K. A. & Simpson, J. (1999). TITAN2000 University of Otago, New Zealand.
  • Lindgren, H., Pero, R. W., Ivars, F. & Leanderson, T. (2001). Mol. Immunol.38, 267–277. [PubMed]
  • Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  • Olsson, A. R., Lindgren, H., Pero, R. W. & Leanderson, T. (2002). Br. J. Cancer, 86, 971–978. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Westrip, S. P. (2010). publCIF In preparation.
  • Zhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett.9, 1415–1418. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography