PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m471–m472.
Published online 2010 March 31. doi:  10.1107/S1600536810011293
PMCID: PMC2983766

Tetra­aqua­bis[μ-N-(5-nitro-2-oxido­benzyl­idene)glycylglycinato]manganese(II)dinickel(II) tetra­hydrate

Abstract

The two unique NiII atoms of the title complex, [MnNi2(C11H8N3O6)2(H2O)4]·4H2O, have a slightly distorted square-planar coordination environment with a tetra­dentate N-(5-nitro-2-oxidobenzyl­idene)glycylglycinate Schiff base trianion. The NiII atoms are coordinated by one phenolate O atom, one imine N atom, one amido N atom and one carboxyl­ate O atom. The MnII atom is connected via the carboxyl­ate groups, forming a hetero-trinuclear NiII–MnII–NiII system. The MnII atom is six-coordinated in an octa­hedral geometry by four O atoms from two carboxyl­ate groups and four water mol­ecules. The NiII–MnII–NiII hetero-trinuclear mol­ecules are stacked in the crystal and cross-linked through O—H(...)O hydrogen bonds.

Related literature

Transition metal complexes of salicylaldehyde-peptides and salicylaldehyde-amino acid Schiff bases are non-enzymatic models for pyridoxal-amino acid systems, which are of considerable importance as key inter­mediates in many metabolic reactions of amino acids catalysed by enzymes, see: Bkouche-Waksman et al. (1988 [triangle]); Wetmore et al. (2001 [triangle]); Zabinski & Toney (2001 [triangle]). For the preparation, structural characterization, appropriate spectroscopy and magnetic studies of Schiff-base complexes derived from salicylaldehyde and amino acids, see: Ganguly et al. (2008 [triangle]) and references cited therein. For Schiff bases derived from simple peptides, see: Zou et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m471-scheme1.jpg

Experimental

Crystal data

  • [MnNi2(C11H8N3O6)2(H2O)4]·4H2O
  • M r = 872.90
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m471-efi1.jpg
  • a = 7.250 (1) Å
  • b = 11.581 (2) Å
  • c = 38.058 (6) Å
  • β = 90.29 (1)°
  • V = 3195.4 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.65 mm−1
  • T = 293 K
  • 0.25 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker 2003 [triangle]) T min = 0.68, T max = 0.78
  • 15513 measured reflections
  • 5600 independent reflections
  • 2635 reflections with I > 2σ(I)
  • R int = 0.111

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065
  • wR(F 2) = 0.161
  • S = 0.93
  • 5600 reflections
  • 460 parameters
  • 387 restraints
  • H-atom parameters constrained
  • Δρmax = 0.59 e Å−3
  • Δρmin = −0.54 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: DIAMOND (Brandenburg, 2000 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810011293/jh2139sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011293/jh2139Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author thanks the Natural Science Foundation of Zhejiang Province, China (No. Y4080342) and the Science Foundation of Zhejiang Sci-Tech University (No. 0813622-Y) for financial support.

supplementary crystallographic information

Comment

Transition metal complexes of salicylaldehyde-peptides and salicylaldehyde-amino acid Schiff base are non-enzymatic models for pyridoxal-amino acid systems, which are of considerable importance as key intermediates in many metabolic reactions of amino acids catalyzed by enzymes (Zabinski et al., 2001; Wetmore et al., 2001; Bkouche-Waksman et al.,1988). Considerable effort has been devoted to the preparation, structural characterization, appropriate spectroscopy and magnetic studies of Schiff-base complexes derived from salicylaldehyde and amino acids and reduced salicylidene amino acid (Ganguly et al., 2008), but little attention has been given to Schiff base derived from simple peptides (Zou et al., 2003). Herein, we report the structure study of [Mn(H2O)4(Ni(C11H8N3O6))2]2.4H2O (H2L= Schiff bases derived from glycylglycine and 5-nitrosalicylaldehyde, C11H10N3O6).

The complex crystallizes in the monoclinic system, space group P21/n. The unit contents consist of one polynuclear molecule Mn(H2O)4[Ni(L)]2 and four water molecules (Fig 1). In each unit, one Mn(H2O)42+group and two symmetric [Ni(L)]- groups are connected by carboxylate oxygen atoms (O5, O11). The coordination environment of the two Ni(II) centers is approximately square-planar. The deprotonated Schiff base ligand is a triple negatively-charged tetradentate ONNO group, coordinating to the Ni(II) atom via one phenolic oxygen atom (Ni1-O1 = 1.860 (3) Å), one deprotonated amide nitrogen atom (Ni1-N2 = 1.832 (4) Å), one imino nitrogen atom (Ni1-N3 =1.816 (4) Å) and one carboxylate oxygen atom (Ni1-O6 =1.879 (3) Å). The values 1.481 (6)Å for the (C8-N2) bond, shorter than the usual C-N single bond and the double bond (C7-N2) length of 1.262 (6)Å agree well with the values of Schiff Base type I. A slight distortion in the square planar geometry of Ni (II) is present (observed bond angles vary from 85.72 (19) and 96.51 (17)° ) The best-fit least-squares plane through the four basal and Ni atoms shows these atoms to be nearly coplanar. The O1-Ni1-N3 angle of 177.46 (18) ° is nearly linear. The ligating atoms at Ni2 are similar to those at Ni1. Two carboxylate oxygen atoms (O5, O11) and four water molecule oxygen atoms (O13, O14, O15, O16) coordinate to the manganese atom forming a distorted octahedron. The Mn—O distances range from 2.125 (4) to 2.252 (3) Å. In the packing scheme of this compound the intermolecular and intramolecular hydrogen bonds plays a very important role. The hydrogen atoms of water bond with the carbonylic, carboxylic, phenolic and nitryl oxygen of the Schiff base ligand (Fig. 2). The molecules are linked by the hydrogen bond to form a two-dimensional network in the solid state.

Experimental

The Schiff base was prepared through the condensation of the glycylglycine and 2-hydrogen-5-nitrobenzaldehyde. glycylglycine (10 mmol) was dissolved and refluxed in absolute methanol (40 mL) containing LiOH.H2O (10 mmol). After cooled to room temperature, a solution of 2-hydrogen-5-nitrobenzaldehyde (10 mmol) in absolute methanol was added slowly with stirring for 10 min. then NiCl2.6H2O (10 mmol) was added to the HLLi solution and the resulting solution was adjusted to the pH = 9-11 by 1.0 mol/L NaOH solution. After stirring at room temperature for 30 min, the volume was reduced to ca. 5 mL in vacuo. Anhydrous ethanol was added to precipitate the product out, which can be recrystallized in methanol solution.(Found: C, 33.4; H, 3.0; N, 10.6. Calc. For C11H12N3O8NiNa: C, 33.4; H, 3.1; N, 10.6%.) Na[NiL].2H2O (2 mmol) was dissolved in 10 mL water. Then MnCl2.4H2O (1 mmol) was added to the solution with stirring. The resulting crude product was precipitated. It was recrystallized in hot water (90°C) and filtered. The filtrate was allowed to evaporate slowly at room temperature. After several days orange crystals suitable for X-ray diffraction were obtained. (Found: C, 30.4; H, 3.8; N, 9.6. Calc. For C22H32N6O20Ni2Mn: C, 30.3; H, 3.7; N, 9.6%.)

Refinement

The water H atoms in the complex were located in a difference Fourier map with a distance restraint of O-H = 0.85 Å and Uiso(H) =1.5Ueq(O). All other H atoms were positioned geometrically and constrained as riding atoms, with C-H distances of 0.93–0.97 Å and Uiso(H) set to 1.2 or 1.5Ueq(C) of the parent atom.

Figures

Fig. 1.
ORTEP plot of complex 1 with atom numbering scheme (Thermal ellipsoids are drawn at 40% probability level).
Fig. 2.
Schematic representation of the hydrogen-bonded (dashed lines)2-D network.

Crystal data

[MnNi2(C11H8N3O6)2(H2O)4]·4H2OF(000) = 1788
Mr = 872.90Dx = 1.814 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2635 reflections
a = 7.250 (1) Åθ = 1.8–25°
b = 11.581 (2) ŵ = 1.65 mm1
c = 38.058 (6) ÅT = 293 K
β = 90.29 (1)°Block, orange
V = 3195.4 (9) Å30.25 × 0.20 × 0.15 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer5600 independent reflections
Radiation source: fine-focus sealed tube2635 reflections with I > 2σ(I)
graphiteRint = 0.111
2θ/ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker 2003)h = −8→8
Tmin = 0.68, Tmax = 0.78k = −13→13
15513 measured reflectionsl = −36→45

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 0.93w = 1/[σ2(Fo2) + (0.0546P)2] where P = (Fo2 + 2Fc2)/3
5600 reflections(Δ/σ)max < 0.001
460 parametersΔρmax = 0.59 e Å3
387 restraintsΔρmin = −0.54 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni1−0.13915 (11)0.32785 (5)0.362499 (18)0.0266 (2)
Ni20.13623 (11)−0.16406 (5)0.138128 (18)0.0263 (2)
Mn10.07802 (13)0.22949 (7)0.21569 (2)0.0299 (2)
C1−0.2519 (8)0.2158 (5)0.42448 (14)0.0343 (6)
C2−0.2786 (8)0.1139 (5)0.44456 (14)0.0363 (7)
H2A−0.25030.04250.43470.044*
C3−0.3441 (8)0.1186 (5)0.47744 (15)0.0376 (7)
H3A−0.36230.05060.49000.045*
C4−0.3853 (8)0.2253 (5)0.49316 (14)0.0397 (6)
C5−0.3575 (8)0.3253 (5)0.47496 (14)0.0365 (7)
H5A−0.38390.39560.48560.044*
C6−0.2909 (8)0.3237 (5)0.44104 (14)0.0348 (6)
C7−0.2654 (8)0.4335 (5)0.42340 (14)0.0345 (7)
H7A−0.29630.50030.43560.041*
C8−0.1714 (8)0.5609 (4)0.37804 (14)0.0351 (7)
H8A−0.07900.60080.39200.042*
H8B−0.28450.60560.37860.042*
C9−0.1063 (8)0.5487 (4)0.34098 (14)0.0332 (7)
C10−0.0249 (8)0.4045 (4)0.29709 (14)0.0341 (7)
H10A0.09790.43390.29250.041*
H10B−0.10760.43180.27880.041*
C11−0.0235 (8)0.2740 (5)0.29821 (14)0.0363 (6)
C120.2613 (8)−0.1431 (4)0.06885 (14)0.0341 (6)
C130.3061 (8)−0.0732 (5)0.03937 (14)0.0353 (7)
H13B0.29250.00650.04070.042*
C140.3657 (8)−0.1209 (5)0.00931 (15)0.0368 (7)
H14B0.3987−0.0733−0.00930.044*
C150.3803 (8)−0.2388 (5)0.00598 (14)0.0378 (6)
C160.3400 (8)−0.3108 (5)0.03311 (14)0.0355 (7)
H16B0.3521−0.39030.03040.043*
C170.2800 (8)−0.2648 (5)0.06529 (14)0.0334 (6)
C180.2295 (8)−0.3429 (4)0.09273 (14)0.0316 (7)
H18A0.2388−0.42160.08820.038*
C190.1324 (8)−0.4005 (4)0.14912 (13)0.0322 (7)
H19A0.2407−0.44710.15400.039*
H19B0.0356−0.45070.14030.039*
C200.0680 (8)−0.3401 (4)0.18241 (14)0.0313 (7)
C210.0135 (8)−0.1520 (4)0.20698 (14)0.0313 (7)
H21A0.0953−0.15950.22710.038*
H21B−0.1113−0.16920.21440.038*
C220.0243 (8)−0.0315 (4)0.19229 (14)0.0326 (6)
N1−0.4516 (7)0.2300 (4)0.52840 (12)0.0482 (8)
N2−0.2042 (7)0.4442 (4)0.39261 (11)0.0345 (7)
N3−0.0881 (6)0.4422 (3)0.33140 (11)0.0326 (7)
N40.4505 (7)−0.2882 (4)−0.02607 (12)0.0437 (8)
N50.1731 (6)−0.3116 (3)0.12300 (11)0.0310 (7)
N60.0683 (6)−0.2311 (3)0.17905 (11)0.0304 (7)
O1−0.1939 (5)0.2064 (3)0.39269 (9)0.0344 (7)
O2−0.4768 (7)0.1386 (4)0.54427 (11)0.0642 (12)
O3−0.4846 (7)0.3229 (4)0.54206 (11)0.0600 (11)
O4−0.0787 (6)0.6368 (3)0.32280 (10)0.0368 (10)
O50.0188 (6)0.2181 (3)0.27154 (10)0.0417 (7)
O6−0.0703 (5)0.2253 (3)0.32661 (9)0.0366 (7)
O70.2050 (5)−0.0921 (3)0.09717 (9)0.0348 (7)
O80.4990 (6)−0.2206 (3)−0.04983 (10)0.0560 (11)
O90.4621 (6)−0.3915 (3)−0.02960 (11)0.0560 (11)
O100.0257 (5)−0.3997 (3)0.20923 (9)0.0341 (10)
O11−0.0247 (5)0.0516 (3)0.21069 (9)0.0353 (7)
O120.0853 (5)−0.0228 (3)0.16104 (9)0.0316 (7)
O13−0.1904 (5)0.2964 (3)0.20329 (11)0.0541 (10)
H13A−0.24580.31180.22230.081*
H13D−0.25080.24560.19190.081*
O140.3433 (5)0.1613 (3)0.22748 (10)0.0437 (9)
H14A0.35800.15960.24960.066*
H14D0.42510.20440.21840.066*
O150.1896 (6)0.4015 (3)0.21661 (10)0.0427 (10)
H15B0.30180.39940.21020.064*
H15C0.12840.44380.20250.064*
O160.1345 (6)0.2113 (3)0.15781 (9)0.0425 (10)
H16C0.20930.15580.15470.064*
H16D0.03410.19730.14700.064*
O170.5613 (6)0.4713 (3)0.21007 (11)0.0573 (15)
H17B0.52870.52100.19480.086*
H17C0.56420.50260.23020.086*
O180.3366 (6)0.3427 (4)0.11301 (11)0.0700 (17)
H18B0.33220.31350.09250.105*
H18D0.44790.34450.12010.105*
O190.6018 (6)0.4872 (3)0.13746 (11)0.0641 (16)
H19C0.67780.53280.14730.096*
H19E0.53470.52480.12310.096*
O200.8821 (7)0.3487 (4)0.11641 (12)0.0738 (17)
H20D0.77380.32940.12250.089*
H20A0.89380.33980.09440.111*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0393 (5)0.0211 (3)0.0196 (4)0.0026 (4)0.0049 (3)0.0005 (3)
Ni20.0400 (5)0.0171 (3)0.0220 (4)0.0029 (4)0.0017 (3)0.0001 (3)
Mn10.0426 (6)0.0215 (4)0.0256 (5)0.0016 (4)0.0047 (4)0.0000 (4)
C10.0433 (13)0.0324 (10)0.0274 (10)−0.0038 (12)0.0070 (11)0.0030 (9)
C20.0443 (15)0.0348 (11)0.0298 (12)−0.0036 (14)0.0056 (13)0.0047 (11)
C30.0459 (16)0.0371 (11)0.0298 (12)−0.0078 (14)0.0054 (13)0.0061 (11)
C40.0496 (13)0.0406 (11)0.0290 (10)−0.0097 (12)0.0070 (11)0.0015 (9)
C50.0453 (15)0.0364 (12)0.0280 (11)−0.0070 (14)0.0056 (13)−0.0010 (10)
C60.0435 (13)0.0340 (10)0.0270 (10)−0.0038 (12)0.0064 (11)−0.0004 (9)
C70.0456 (15)0.0318 (11)0.0262 (11)0.0000 (14)0.0100 (13)−0.0031 (10)
C80.0508 (15)0.0250 (11)0.0295 (11)0.0019 (14)0.0100 (13)−0.0024 (10)
C90.0478 (15)0.0230 (10)0.0289 (12)−0.0008 (13)0.0093 (13)0.0001 (9)
C100.0487 (15)0.0253 (10)0.0283 (12)−0.0046 (14)0.0134 (13)−0.0020 (10)
C110.0538 (13)0.0254 (10)0.0299 (9)−0.0030 (12)0.0157 (11)−0.0046 (10)
C120.0466 (13)0.0292 (10)0.0265 (10)−0.0019 (12)0.0043 (11)0.0014 (9)
C130.0474 (15)0.0316 (12)0.0270 (12)−0.0032 (14)0.0034 (13)0.0023 (10)
C140.0479 (16)0.0354 (11)0.0272 (12)−0.0055 (14)0.0026 (13)0.0010 (11)
C150.0496 (13)0.0355 (10)0.0284 (10)−0.0063 (12)0.0025 (11)−0.0018 (9)
C160.0456 (15)0.0319 (12)0.0289 (11)−0.0040 (14)0.0031 (12)−0.0031 (10)
C170.0440 (13)0.0289 (10)0.0273 (10)−0.0019 (12)0.0025 (11)−0.0010 (9)
C180.0443 (15)0.0235 (12)0.0270 (11)−0.0010 (14)0.0024 (12)−0.0038 (10)
C190.0475 (15)0.0201 (11)0.0289 (11)0.0005 (14)0.0033 (13)−0.0006 (10)
C200.0469 (15)0.0200 (10)0.0271 (11)0.0006 (13)0.0028 (13)0.0004 (10)
C210.0449 (15)0.0207 (10)0.0284 (12)−0.0008 (13)0.0071 (13)−0.0008 (10)
C220.0470 (13)0.0206 (9)0.0302 (11)−0.0008 (12)0.0068 (11)−0.0020 (9)
N10.0628 (17)0.0497 (13)0.0323 (13)−0.0140 (15)0.0127 (14)0.0000 (11)
N20.0492 (16)0.0281 (10)0.0263 (11)0.0012 (13)0.0098 (12)−0.0012 (9)
N30.0476 (15)0.0235 (9)0.0269 (11)−0.0038 (13)0.0113 (13)−0.0022 (9)
N40.0584 (17)0.0394 (12)0.0333 (13)−0.0085 (15)0.0088 (14)−0.0036 (11)
N50.0449 (15)0.0201 (10)0.0279 (10)−0.0002 (13)0.0050 (12)−0.0022 (9)
N60.0456 (15)0.0191 (9)0.0267 (11)−0.0012 (13)0.0060 (12)0.0002 (9)
O10.0462 (18)0.0298 (12)0.0272 (11)−0.0009 (15)0.0069 (13)0.0017 (10)
O20.096 (3)0.0608 (15)0.0361 (19)−0.018 (2)0.025 (2)0.0044 (16)
O30.080 (3)0.0618 (15)0.038 (2)−0.005 (2)0.027 (2)−0.0038 (16)
O40.052 (2)0.0251 (14)0.0339 (18)−0.0018 (18)0.0044 (18)0.0058 (14)
O50.0627 (16)0.0301 (13)0.0324 (10)−0.0030 (15)0.0174 (11)−0.0070 (10)
O60.0546 (18)0.0226 (11)0.0327 (11)−0.0025 (15)0.0165 (14)−0.0039 (10)
O70.0515 (18)0.0264 (12)0.0267 (11)−0.0008 (15)0.0055 (13)0.0021 (10)
O80.082 (3)0.0493 (17)0.0368 (17)−0.012 (2)0.0166 (19)−0.0006 (16)
O90.083 (3)0.0416 (14)0.043 (2)−0.008 (2)0.016 (2)−0.0106 (15)
O100.048 (2)0.0242 (16)0.0300 (16)0.0045 (18)0.0046 (17)0.0047 (13)
O110.0509 (15)0.0233 (9)0.0319 (14)−0.0016 (11)0.0061 (13)−0.0050 (10)
O120.0471 (18)0.0172 (11)0.0305 (12)−0.0018 (14)0.0082 (13)−0.0013 (10)
O130.0444 (14)0.0422 (19)0.076 (2)0.0112 (14)−0.0082 (16)−0.014 (2)
O140.0414 (14)0.0468 (19)0.043 (2)0.0072 (14)0.0042 (14)0.003 (2)
O150.055 (2)0.0285 (13)0.045 (2)−0.0078 (14)−0.001 (2)0.0030 (14)
O160.058 (2)0.040 (2)0.0293 (12)−0.0019 (19)0.0033 (14)−0.0009 (14)
O170.070 (3)0.037 (2)0.066 (3)0.001 (2)0.015 (3)0.001 (2)
O180.082 (4)0.080 (3)0.047 (3)−0.024 (3)0.010 (3)−0.013 (3)
O190.087 (4)0.044 (3)0.062 (3)−0.004 (3)0.007 (3)0.001 (2)
O200.077 (4)0.093 (4)0.051 (3)0.007 (3)0.024 (3)0.007 (3)

Geometric parameters (Å, °)

Ni1—N31.816 (4)C13—C141.344 (7)
Ni1—N21.832 (4)C13—H13B0.9300
Ni1—O11.860 (3)C14—C151.376 (7)
Ni1—O61.879 (3)C14—H14B0.9299
Ni2—N61.811 (4)C15—C161.361 (7)
Ni2—N51.823 (4)C15—N41.442 (7)
Ni2—O71.839 (4)C16—C171.407 (7)
Ni2—O121.891 (3)C16—H16B0.9300
Mn1—O142.125 (4)C17—C181.431 (7)
Mn1—O132.145 (4)C18—N51.277 (6)
Mn1—O152.150 (3)C18—H18A0.9299
Mn1—O52.174 (4)C19—N51.462 (6)
Mn1—O112.198 (3)C19—C201.522 (7)
Mn1—O162.252 (3)C19—H19A0.9701
C1—O11.287 (6)C19—H19B0.9698
C1—C21.421 (7)C20—N61.268 (6)
C1—C61.428 (7)C20—O101.271 (6)
C2—C31.341 (7)C21—N61.460 (6)
C2—H2A0.9300C21—C221.506 (7)
C3—C41.405 (8)C21—H21A0.9701
C3—H3A0.9300C21—H21B0.9701
C4—C51.365 (7)C22—O111.243 (6)
C4—N11.428 (7)C22—O121.275 (6)
C5—C61.381 (7)N1—O31.219 (6)
C5—H5A0.9300N1—O21.233 (6)
C6—C71.449 (7)N4—O91.207 (6)
C7—N21.262 (6)N4—O81.248 (5)
C7—H7A0.9300O13—H13A0.8499
C8—N21.481 (6)O13—H13D0.8501
C8—C91.496 (7)O14—H14A0.8501
C8—H8A0.9700O14—H14D0.8499
C8—H8B0.9700O15—H15B0.8501
C9—O41.249 (6)O15—H15C0.8502
C9—N31.294 (6)O16—H16C0.8497
C10—N31.453 (6)O16—H16D0.8496
C10—C111.512 (7)O17—H17B0.8503
C10—H10A0.9700O17—H17C0.8491
C10—H10B0.9700O18—H18B0.8499
C11—O51.243 (6)O18—H18D0.8500
C11—O61.267 (6)O19—H19C0.8500
C12—O71.296 (6)O19—H19E0.8500
C12—C131.422 (7)O20—H20D0.8499
C12—C171.422 (7)O20—H20A0.8501
N3—Ni1—N285.72 (19)C13—C14—H14B119.4
N3—Ni1—O1177.46 (18)C15—C14—H14B119.9
N2—Ni1—O196.51 (17)C16—C15—C14121.5 (5)
N3—Ni1—O686.06 (17)C16—C15—N4118.5 (5)
N2—Ni1—O6171.67 (17)C14—C15—N4119.9 (5)
O1—Ni1—O691.69 (15)C15—C16—C17119.8 (5)
N6—Ni2—N584.86 (19)C15—C16—H16B120.1
N6—Ni2—O7178.46 (17)C17—C16—H16B120.1
N5—Ni2—O796.66 (17)C16—C17—C12119.3 (5)
N6—Ni2—O1285.41 (17)C16—C17—C18118.5 (5)
N5—Ni2—O12170.27 (17)C12—C17—C18122.2 (5)
O7—Ni2—O1293.07 (15)N5—C18—C17124.3 (5)
O14—Mn1—O13179.20 (16)N5—C18—H18A117.9
O14—Mn1—O1590.04 (15)C17—C18—H18A117.8
O13—Mn1—O1590.57 (15)N5—C19—C20107.8 (4)
O14—Mn1—O587.37 (15)N5—C19—H19A110.9
O13—Mn1—O593.08 (16)C20—C19—H19A110.3
O15—Mn1—O596.69 (14)N5—C19—H19B109.6
O14—Mn1—O1188.61 (14)C20—C19—H19B109.8
O13—Mn1—O1190.74 (15)H19A—C19—H19B108.4
O15—Mn1—O11175.37 (14)N6—C20—O10128.4 (5)
O5—Mn1—O1187.67 (14)N6—C20—C19111.9 (5)
O14—Mn1—O1690.16 (15)O10—C20—C19119.7 (4)
O13—Mn1—O1689.30 (16)N6—C21—C22107.3 (4)
O15—Mn1—O1691.85 (14)N6—C21—H21A110.6
O5—Mn1—O16171.11 (13)C22—C21—H21A110.1
O11—Mn1—O1683.72 (13)N6—C21—H21B110.0
O1—C1—C2118.8 (5)C22—C21—H21B110.4
O1—C1—C6123.7 (5)H21A—C21—H21B108.5
C2—C1—C6117.5 (5)O11—C22—O12124.5 (5)
C3—C2—C1121.2 (5)O11—C22—C21119.5 (5)
C3—C2—H2A119.4O12—C22—C21116.0 (4)
C1—C2—H2A119.4O3—N1—O2121.2 (5)
C2—C3—C4120.7 (5)O3—N1—C4120.2 (5)
C2—C3—H3A119.7O2—N1—C4118.6 (5)
C4—C3—H3A119.7C7—N2—C8119.7 (4)
C5—C4—C3119.8 (5)C7—N2—Ni1127.0 (4)
C5—C4—N1119.7 (5)C8—N2—Ni1113.3 (3)
C3—C4—N1120.5 (5)C9—N3—C10125.0 (4)
C4—C5—C6121.1 (5)C9—N3—Ni1119.4 (4)
C4—C5—H5A119.5C10—N3—Ni1115.6 (3)
C6—C5—H5A119.5O9—N4—O8121.4 (5)
C5—C6—C1119.7 (5)O9—N4—C15120.8 (5)
C5—C6—C7117.8 (5)O8—N4—C15117.8 (4)
C1—C6—C7122.5 (5)C18—N5—C19118.7 (4)
N2—C7—C6124.2 (5)C18—N5—Ni2126.8 (4)
N2—C7—H7A117.9C19—N5—Ni2114.5 (3)
C6—C7—H7A117.9C20—N6—C21123.4 (4)
N2—C8—C9108.6 (4)C20—N6—Ni2120.9 (4)
N2—C8—H8A110.0C21—N6—Ni2115.7 (3)
C9—C8—H8A110.0C1—O1—Ni1126.0 (3)
N2—C8—H8B110.0C11—O5—Mn1144.8 (4)
C9—C8—H8B110.0C11—O6—Ni1114.4 (3)
H8A—C8—H8B108.4C12—O7—Ni2125.9 (3)
O4—C9—N3127.3 (5)C22—O11—Mn1132.6 (4)
O4—C9—C8119.8 (5)C22—O12—Ni2115.6 (3)
N3—C9—C8112.9 (5)Mn1—O13—H13A108.7
N3—C10—C11106.1 (4)Mn1—O13—H13D109.1
N3—C10—H10A110.5H13A—O13—H13D109.5
C11—C10—H10A110.5Mn1—O14—H14A109.1
N3—C10—H10B110.5Mn1—O14—H14D109.2
C11—C10—H10B110.5H14A—O14—H14D109.5
H10A—C10—H10B108.7Mn1—O15—H15B109.2
O5—C11—O6122.2 (5)Mn1—O15—H15C109.2
O5—C11—C10119.9 (5)H15B—O15—H15C109.5
O6—C11—C10117.8 (5)Mn1—O16—H16C109.1
O7—C12—C13118.1 (5)Mn1—O16—H16D109.4
O7—C12—C17124.1 (5)H16C—O16—H16D109.5
C13—C12—C17117.8 (5)H17B—O17—H17C109.5
C14—C13—C12120.9 (5)H18B—O18—H18D109.5
C14—C13—H13B119.2H19C—O19—H19E109.5
C12—C13—H13B119.8H20D—O20—H20A109.5
C13—C14—C15120.8 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O13—H13A···O17i0.852.362.723 (5)106
O13—H13D···O4ii0.851.852.681 (5)165
O14—H14A···O10iii0.851.902.679 (5)151
O14—H14D···O4iv0.852.082.586 (5)118
O15—H15B···O170.852.062.826 (6)150
O15—H15C···O10v0.851.982.607 (5)130
O16—H16C···O120.852.272.737 (5)115
O16—H16D···O20i0.852.372.887 (6)119
O17—H17B···O6iii0.852.523.257 (5)145
O17—H17C···O11iii0.852.343.168 (5)166
O18—H18B···O8vi0.852.313.039 (6)145
O18—H18D···O190.852.102.710 (6)128
O19—H19C···O6iii0.852.563.087 (5)121
O19—H19E···O1iii0.852.472.867 (5)109
O20—H20A···O2vii0.852.142.938 (6)156
O20—H20D···O190.852.292.713 (6)111

Symmetry codes: (i) x−1, y, z; (ii) −x−1/2, y−1/2, −z+1/2; (iii) −x+1/2, y+1/2, −z+1/2; (iv) −x+1/2, y−1/2, −z+1/2; (v) x, y+1, z; (vi) −x+1, −y, −z; (vii) x+3/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2139).

References

  • Bkouche-Waksman, I., Barbe, J. M. & Kvick, Å. (1988). Acta Cryst. B44, 595–601. [PubMed]
  • Brandenburg, K. (2000). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2003). SADABS, SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ganguly, R., Sreenivasulu, B. & Vittal, J. J. (2008). Coord. Chem. Rev.252,1027–1050.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wetmore, S. D., Smith, D. M. & Radom, L. (2001). J. Am. Chem. Soc.123, 8678–8689. [PubMed]
  • Zabinski, R. F. & Toney, M. D. (2001). J. Am. Chem. Soc.123, 193–198. [PubMed]
  • Zou, Y., Liu, W. L., Gao, S., Xi, J. L. & Meng, Q. J. (2003). Chem. Commun. pp. 2946–2947. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography