PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o752.
Published online 2010 March 6. doi:  10.1107/S1600536810007531
PMCID: PMC2983764

2-Chloro-N′-(2,4-dichloro­benzyl­idene)benzohydrazide

Abstract

The title Schiff base compound, C14H9Cl3N2O, exists in a trans configuration with respect to the C=N bond and the dihedral angle between the two benzene rings is 13.5 (2)°. In the crystal, inter­molecular N—H(...)O hydrogen bonds link adjacent mol­ecules into extended C(4) chains propagating along the c-axis direction.

Related literature

For a related structure and background material, see the previous paper: Zhou & Yang (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o752-scheme1.jpg

Experimental

Crystal data

  • C14H9Cl3N2O
  • M r = 327.58
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o752-efi1.jpg
  • a = 7.4737 (11) Å
  • b = 25.877 (4) Å
  • c = 8.1833 (12) Å
  • β = 116.013 (2)°
  • V = 1422.3 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.64 mm−1
  • T = 298 K
  • 0.23 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.867, T max = 0.883
  • 7752 measured reflections
  • 2828 independent reflections
  • 2066 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.121
  • S = 1.02
  • 2828 reflections
  • 184 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.59 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810007531/hb5344sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810007531/hb5344Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge support of this project by Hunan Provincial Natural Science Foundation of China Scientific Research (09JJ6022) and the Fund of Hunan Provincial Education Department (08B031), People’s Republic of China.

supplementary crystallographic information

Comment

As part of our ongoing studies of Schiff bases (Zhou & Yang, 2010), the crystal structure of the title Schiff base, (I), derived from the condensing of 2,4-dichlorobenzaldehyde with 2-chlorobenzohydrazide in methanol is reported.

The molecule exists in a trans configuration with respect to the acyclic C═N bond. The molecule of the compound is distorted, with the dihedral angle between the two benzene rings of 13.5 (2)°.

In the crystal structure, intermolecular N—H···O hydrogen bonds link adjacent molecules into extended chains along the c axis (Table 1 and Fig. 2).

Experimental

2,4-Dichlorobenzaldehyde (1.0 mmol, 175 mg) and 2-chlorobenzohydrazide (1.0 mmol, 170 mg) were dissolved in a methanol solution (30 ml). The mixture was stirred for 30 min at room temperature. The resulting solution was left in air for a few days, yielding colourless blocks of (I).

Refinement

H2 attached to N2 was located in a difference map and refined with N—H distance restrained to 0.90 (1)Å. The remaining H atoms were positioned geometrically, with C—H distances of 0.93 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), with ellipsoids drawn at the 30% probability level.
Fig. 2.
The packing of (I), viewed along the a axis. Hydrogen bonds are drawn as dashed lines.

Crystal data

C14H9Cl3N2OF(000) = 664
Mr = 327.58Dx = 1.530 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2111 reflections
a = 7.4737 (11) Åθ = 3.0–24.9°
b = 25.877 (4) ŵ = 0.64 mm1
c = 8.1833 (12) ÅT = 298 K
β = 116.013 (2)°Block, colourless
V = 1422.3 (4) Å30.23 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer2828 independent reflections
Radiation source: fine-focus sealed tube2066 reflections with I > 2σ(I)
graphiteRint = 0.029
ω scansθmax = 26.2°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→7
Tmin = 0.867, Tmax = 0.883k = −28→32
7752 measured reflectionsl = −10→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0516P)2 + 0.7512P] where P = (Fo2 + 2Fc2)/3
2828 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.59 e Å3
1 restraintΔρmin = −0.36 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.19289 (14)0.55576 (3)0.33995 (10)0.0770 (3)
Cl20.73603 (12)0.52632 (3)1.02156 (11)0.0691 (3)
Cl30.07212 (14)0.90788 (3)0.33033 (13)0.0715 (3)
H20.076 (5)0.7358 (12)0.209 (2)0.080*
N10.1947 (3)0.71586 (8)0.4668 (3)0.0436 (5)
N20.0880 (3)0.74638 (8)0.3170 (3)0.0435 (5)
O10.0219 (3)0.80567 (7)0.4865 (2)0.0554 (5)
C10.3509 (4)0.63513 (10)0.5759 (3)0.0395 (6)
C20.3470 (4)0.58197 (10)0.5493 (3)0.0438 (6)
C30.4627 (4)0.54838 (10)0.6852 (4)0.0477 (7)
H30.45540.51290.66480.057*
C40.5895 (4)0.56846 (11)0.8522 (3)0.0450 (6)
C50.6012 (4)0.62076 (11)0.8836 (4)0.0482 (7)
H50.68950.63390.99610.058*
C60.4815 (4)0.65335 (10)0.7478 (3)0.0444 (6)
H60.48740.68870.77070.053*
C70.2298 (4)0.67024 (10)0.4305 (3)0.0421 (6)
H70.17770.65930.31020.051*
C80.0076 (4)0.79055 (9)0.3394 (3)0.0419 (6)
C9−0.1100 (4)0.81908 (10)0.1658 (3)0.0421 (6)
C10−0.0930 (4)0.87193 (11)0.1520 (4)0.0510 (7)
C11−0.2088 (6)0.89765 (13)−0.0095 (5)0.0675 (9)
H11−0.19440.9331−0.01910.081*
C12−0.3438 (6)0.87046 (16)−0.1536 (5)0.0769 (11)
H12−0.42300.8879−0.26060.092*
C13−0.3653 (5)0.81802 (15)−0.1446 (4)0.0701 (10)
H13−0.45710.8003−0.24540.084*
C14−0.2510 (4)0.79142 (13)0.0140 (3)0.0557 (8)
H14−0.26630.75590.02110.067*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0824 (6)0.0591 (5)0.0504 (5)0.0065 (4)−0.0068 (4)−0.0140 (4)
Cl20.0573 (5)0.0710 (5)0.0564 (5)0.0074 (4)0.0042 (4)0.0240 (4)
Cl30.0819 (6)0.0509 (4)0.0903 (6)−0.0115 (4)0.0457 (5)−0.0095 (4)
N10.0532 (13)0.0462 (13)0.0320 (11)0.0056 (10)0.0192 (10)0.0040 (9)
N20.0597 (14)0.0440 (12)0.0296 (11)0.0123 (10)0.0221 (11)0.0046 (9)
O10.0890 (15)0.0477 (11)0.0363 (10)0.0098 (10)0.0336 (10)0.0001 (8)
C10.0392 (14)0.0470 (14)0.0319 (13)0.0031 (11)0.0150 (11)0.0036 (11)
C20.0406 (15)0.0472 (15)0.0359 (13)0.0019 (12)0.0098 (12)−0.0017 (11)
C30.0454 (16)0.0423 (14)0.0488 (16)0.0026 (12)0.0146 (13)0.0042 (12)
C40.0354 (14)0.0539 (16)0.0402 (14)0.0002 (12)0.0116 (12)0.0112 (12)
C50.0448 (16)0.0601 (18)0.0333 (13)−0.0106 (13)0.0111 (12)0.0018 (12)
C60.0513 (16)0.0429 (14)0.0354 (13)−0.0045 (12)0.0156 (12)−0.0007 (11)
C70.0495 (16)0.0469 (15)0.0302 (13)0.0044 (12)0.0177 (12)0.0002 (11)
C80.0527 (16)0.0413 (14)0.0368 (13)0.0014 (12)0.0244 (12)0.0023 (11)
C90.0534 (16)0.0450 (14)0.0378 (14)0.0112 (12)0.0291 (13)0.0059 (11)
C100.0623 (18)0.0494 (16)0.0565 (17)0.0091 (13)0.0401 (15)0.0056 (13)
C110.089 (3)0.0591 (19)0.072 (2)0.0241 (18)0.052 (2)0.0227 (17)
C120.093 (3)0.093 (3)0.058 (2)0.045 (2)0.045 (2)0.029 (2)
C130.069 (2)0.096 (3)0.0420 (17)0.0223 (19)0.0210 (16)−0.0035 (17)
C140.0590 (18)0.076 (2)0.0337 (14)0.0234 (15)0.0219 (14)0.0061 (13)

Geometric parameters (Å, °)

Cl1—C21.729 (3)C5—C61.369 (4)
Cl2—C41.726 (3)C5—H50.9300
Cl3—C101.714 (3)C6—H60.9300
N1—C71.272 (3)C7—H70.9300
N1—N21.380 (3)C8—C91.497 (3)
N2—C81.341 (3)C9—C101.383 (4)
N2—H20.893 (10)C9—C141.420 (4)
O1—C81.225 (3)C10—C111.391 (4)
C1—C21.391 (4)C11—C121.364 (5)
C1—C61.396 (3)C11—H110.9300
C1—C71.454 (3)C12—C131.372 (5)
C2—C31.377 (3)C12—H120.9300
C3—C41.378 (4)C13—C141.384 (4)
C3—H30.9300C13—H130.9300
C4—C51.373 (4)C14—H140.9300
C7—N1—N2114.9 (2)N1—C7—H7119.8
C8—N2—N1119.05 (19)C1—C7—H7119.8
C8—N2—H2123 (2)O1—C8—N2123.7 (2)
N1—N2—H2118 (2)O1—C8—C9122.5 (2)
C2—C1—C6116.7 (2)N2—C8—C9113.8 (2)
C2—C1—C7121.8 (2)C10—C9—C14119.1 (2)
C6—C1—C7121.5 (2)C10—C9—C8121.9 (2)
C3—C2—C1122.3 (2)C14—C9—C8118.9 (2)
C3—C2—Cl1117.5 (2)C9—C10—C11120.6 (3)
C1—C2—Cl1120.12 (19)C9—C10—Cl3121.6 (2)
C2—C3—C4118.6 (2)C11—C10—Cl3117.7 (2)
C2—C3—H3120.7C12—C11—C10119.4 (3)
C4—C3—H3120.7C12—C11—H11120.3
C5—C4—C3121.1 (2)C10—C11—H11120.3
C5—C4—Cl2120.4 (2)C11—C12—C13121.6 (3)
C3—C4—Cl2118.4 (2)C11—C12—H12119.2
C6—C5—C4119.3 (2)C13—C12—H12119.2
C6—C5—H5120.4C12—C13—C14120.2 (3)
C4—C5—H5120.4C12—C13—H13119.9
C5—C6—C1122.0 (2)C14—C13—H13119.9
C5—C6—H6119.0C13—C14—C9119.1 (3)
C1—C6—H6119.0C13—C14—H14120.5
N1—C7—C1120.4 (2)C9—C14—H14120.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.89 (1)2.00 (1)2.864 (3)164 (3)

Symmetry codes: (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5344).

References

  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhou, C.-S. & Yang, T. (2010). Acta Cryst.E66, o751. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography