PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o987.
Published online 2010 March 31. doi:  10.1107/S1600536810011347
PMCID: PMC2983760

4-[3-(Bromo­meth­yl)benz­yloxy]-3-methoxy­benzaldehyde

Abstract

In the title compound, C16H15BrO3, the dihedral angle between the mean planes of the two benzene rings is 76.64 (2)°. In the crystal structure, there are weak π–π stacking inter­actions, with a centroid–centroid distance of 3.724 (3) Å, as well as an inter­molecular C(...)Br distance [3.495 (2) Å] which is slightly less than the sum of the van der Waals radii for these atoms.

Related literature

For the applications of related compounds, see: Chen et al. (2001 [triangle]); Demestre et al. (2009 [triangle]); Liao et al. (2003 [triangle]); Xia & Hu (2004 [triangle]). For a related structure, see: Jin et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o987-scheme1.jpg

Experimental

Crystal data

  • C16H15BrO3
  • M r = 335.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o987-efi1.jpg
  • a = 14.275 (3) Å
  • b = 11.791 (2) Å
  • c = 8.7315 (17) Å
  • β = 95.671 (3)°
  • V = 1462.5 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.82 mm−1
  • T = 298 K
  • 0.08 × 0.08 × 0.06 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick,1996 [triangle]) T min = 0.798, T max = 0.845
  • 7566 measured reflections
  • 2777 independent reflections
  • 2014 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.150
  • S = 1.07
  • 2777 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 0.85 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810011347/lh5019sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011347/lh5019Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Southwest University (SWUB2006018, XSGX0602 and SWUF2007023) and the Natural Science Foundation of Chongqing (2007BB5369) for financial support.

supplementary crystallographic information

Comment

Vanillin (4-hydroxy-3-methoxybenzaldehyde) and its derivatives are important medicinal intermediates which are extensively employed to prepare bioactive compounds such as anti-hypertension compounds, diureses and deodorisers (Chen, et al., 2001; Demestre, et al., 2009; Liao, et al., 2003; Xia, et al., 2004). Recently, our research has been focused on the development of vanillin-derived azole drugs, and a nitroimidazole derivative has been reported (Jin, et al., 2009). Herein we report the crystal structure of the title compound a potential intermediate for the synthesis of azole antifungal agents.

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the mean planes of the two benzene rings is 76.64 (2)°. In the crystal structure, there are weak π–π stacking interactions where Cg···Cg(-x,2-y,1-z) = 3.724 (3)Å [Cg is the centroid of the C2-C7 ring] as well as an intermolecular C13···Br1(-x+1, 0.5+y, 2.5-z) distance [3.495 (2)Å] which is slightly less than the sum of the van der Waals radii for these atoms.

Experimental

A suspension of 4-hyhydroxy-3-methoxybenzaldehyde (200 mg, 1.31 mmol) and anhydrous potassium carbonate (200 mg, 1.45 mmol, 1.2 equiv) in CH3CN (10 ml) was stirred for 30 min at 338 K, and then tetrabutyl ammonium iodide (TBAI, 5 mg) and 1,3-bis(bromomethyl)benzene (1 g, 3.78 mmol) were added. The resulting mixture was stirred for 5–7 h at 348–353 K (monitored by TLC, eluent, ethyl acetate/petroleum, V/V, 5/1). After the reaction solvent was evaporated under reduced pressure, water (10 mL) was added. The mixture was extracted with chloroform (3×10 ml). The organic layer was collected, dried over anhydrous Na2SO4 and evaporated under reduced pressure to give the crude product, which was purified by silica gel column chromatography (eluent, ethyl acetate/petroleum, V/V, 5/1) to afford the title compound (I). Single crystals were grown by slow evaporation of a solution of (I) in an ethyl acetate and petroleum mixture at room temperature.

Refinement

Hydrogen atoms were placed in calculated positions with C—H = 0.93Å (aromatic), 0.97Å (methylene) and 0.96Å (methyl) with Uiso(H) = 1.2Ueq(C) (aromatic and methylene C) or 1.5Ueq(C) (methyl C).

Figures

Fig. 1.
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C16H15BrO3F(000) = 680
Mr = 335.19Dx = 1.522 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2434 reflections
a = 14.275 (3) Åθ = 2.3–24.0°
b = 11.791 (2) ŵ = 2.82 mm1
c = 8.7315 (17) ÅT = 298 K
β = 95.671 (3)°Block, colourless
V = 1462.5 (5) Å30.08 × 0.08 × 0.06 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer2777 independent reflections
Radiation source: fine-focus sealed tube2014 reflections with I > 2σ(I)
graphiteRint = 0.031
[var phi] and ω scansθmax = 25.7°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick,1996)h = −17→17
Tmin = 0.798, Tmax = 0.845k = −14→14
7566 measured reflectionsl = −10→5

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0765P)2 + 1.2302P] where P = (Fo2 + 2Fc2)/3
2777 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = −0.35 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.58913 (3)0.68699 (4)1.13810 (7)0.0709 (3)
C1−0.0081 (3)1.0150 (5)0.1918 (5)0.0559 (11)
H1−0.03720.94910.15260.067*
C20.0624 (3)1.0028 (4)0.3238 (5)0.0450 (9)
C30.1048 (3)1.0973 (3)0.3971 (5)0.0437 (9)
H30.09151.16930.35720.052*
C40.1657 (3)1.0851 (3)0.5270 (4)0.0409 (9)
C50.1854 (3)0.9748 (3)0.5878 (5)0.0411 (9)
C60.1453 (3)0.8818 (4)0.5123 (5)0.0483 (10)
H60.15980.80930.54930.058*
C70.0832 (3)0.8959 (4)0.3805 (5)0.0492 (10)
H70.05560.83280.33050.059*
C80.1941 (3)1.2830 (4)0.5499 (6)0.0532 (11)
H8A0.21681.28730.45020.080*
H8B0.22781.33630.61800.080*
H8C0.12821.30070.54120.080*
C90.2625 (3)0.8629 (3)0.7868 (5)0.0561 (12)
H9A0.29910.81760.72160.067*
H9B0.20400.82340.79830.067*
C100.3167 (3)0.8807 (3)0.9420 (5)0.0446 (10)
C110.4120 (3)0.8598 (3)0.9632 (5)0.0482 (10)
H110.44300.83590.88020.058*
C120.4628 (3)0.8737 (3)1.1059 (5)0.0486 (10)
C130.4153 (4)0.9079 (3)1.2281 (5)0.0576 (12)
H130.44810.91671.32470.069*
C140.3197 (3)0.9293 (4)1.2093 (6)0.0581 (12)
H140.28860.95271.29250.070*
C150.2709 (3)0.9158 (3)1.0667 (6)0.0530 (11)
H150.20650.93031.05370.064*
C160.5658 (3)0.8494 (4)1.1234 (7)0.0683 (14)
H16A0.59480.88651.21530.082*
H16B0.59420.87981.03560.082*
O1−0.0319 (2)1.1038 (3)0.1288 (4)0.0668 (9)
O20.2083 (2)1.1717 (2)0.6096 (3)0.0501 (7)
O30.2435 (2)0.9726 (2)0.7192 (3)0.0516 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0595 (3)0.0524 (3)0.0992 (5)0.0119 (2)0.0002 (3)0.0131 (3)
C10.056 (3)0.067 (3)0.045 (3)−0.005 (2)0.003 (2)−0.007 (2)
C20.040 (2)0.056 (2)0.040 (2)−0.0003 (18)0.0050 (18)−0.003 (2)
C30.047 (2)0.041 (2)0.044 (2)0.0044 (17)0.0074 (19)0.0016 (19)
C40.041 (2)0.039 (2)0.043 (2)0.0013 (16)0.0025 (18)−0.0020 (18)
C50.041 (2)0.040 (2)0.042 (2)0.0006 (16)0.0021 (18)−0.0009 (18)
C60.053 (2)0.038 (2)0.053 (3)0.0029 (18)0.004 (2)0.0008 (19)
C70.049 (2)0.048 (2)0.050 (2)−0.0055 (19)0.002 (2)−0.010 (2)
C80.063 (3)0.039 (2)0.055 (3)0.0037 (19)−0.007 (2)0.000 (2)
C90.071 (3)0.033 (2)0.061 (3)0.005 (2)−0.011 (2)0.007 (2)
C100.052 (2)0.0263 (18)0.054 (3)0.0026 (16)0.001 (2)0.0082 (18)
C110.051 (2)0.036 (2)0.058 (3)0.0052 (18)0.008 (2)0.006 (2)
C120.051 (2)0.0295 (19)0.064 (3)0.0006 (17)−0.002 (2)0.009 (2)
C130.083 (3)0.034 (2)0.052 (3)−0.001 (2)−0.011 (2)0.003 (2)
C140.072 (3)0.039 (2)0.064 (3)0.001 (2)0.016 (3)−0.003 (2)
C150.050 (2)0.033 (2)0.075 (3)0.0017 (18)0.005 (2)0.001 (2)
C160.058 (3)0.046 (3)0.098 (4)−0.002 (2)−0.009 (3)0.013 (3)
O10.063 (2)0.078 (2)0.055 (2)0.0041 (18)−0.0122 (16)0.0038 (19)
O20.0631 (18)0.0365 (15)0.0474 (17)−0.0004 (13)−0.0112 (14)0.0001 (12)
O30.0621 (18)0.0359 (14)0.0536 (18)0.0014 (13)−0.0108 (15)0.0060 (13)

Geometric parameters (Å, °)

Br1—C161.946 (5)C8—H8C0.9600
C1—O11.216 (6)C9—O31.437 (5)
C1—C21.460 (6)C9—C101.508 (6)
C1—H10.9300C9—H9A0.9700
C2—C71.376 (6)C9—H9B0.9700
C2—C31.393 (6)C10—C111.376 (6)
C3—C41.367 (6)C10—C151.388 (6)
C3—H30.9300C11—C121.388 (6)
C4—O21.358 (5)C11—H110.9300
C4—C51.422 (5)C12—C131.380 (6)
C5—O31.348 (5)C12—C161.492 (6)
C5—C61.375 (6)C13—C141.381 (7)
C6—C71.392 (6)C13—H130.9300
C6—H60.9300C14—C151.375 (7)
C7—H70.9300C14—H140.9300
C8—O21.420 (5)C15—H150.9300
C8—H8A0.9600C16—H16A0.9700
C8—H8B0.9600C16—H16B0.9700
O1—C1—C2125.6 (4)O3—C9—H9B110.2
O1—C1—H1117.2C10—C9—H9B110.2
C2—C1—H1117.2H9A—C9—H9B108.5
C7—C2—C3120.0 (4)C11—C10—C15118.9 (4)
C7—C2—C1118.7 (4)C11—C10—C9120.6 (4)
C3—C2—C1121.2 (4)C15—C10—C9120.4 (4)
C4—C3—C2120.6 (4)C10—C11—C12121.4 (4)
C4—C3—H3119.7C10—C11—H11119.3
C2—C3—H3119.7C12—C11—H11119.3
O2—C4—C3125.2 (4)C13—C12—C11118.4 (4)
O2—C4—C5115.3 (3)C13—C12—C16122.2 (5)
C3—C4—C5119.5 (4)C11—C12—C16119.4 (4)
O3—C5—C6125.8 (4)C12—C13—C14121.1 (4)
O3—C5—C4114.7 (3)C12—C13—H13119.4
C6—C5—C4119.5 (4)C14—C13—H13119.4
C5—C6—C7120.1 (4)C15—C14—C13119.6 (4)
C5—C6—H6119.9C15—C14—H14120.2
C7—C6—H6119.9C13—C14—H14120.2
C2—C7—C6120.3 (4)C14—C15—C10120.6 (4)
C2—C7—H7119.9C14—C15—H15119.7
C6—C7—H7119.9C10—C15—H15119.7
O2—C8—H8A109.5C12—C16—Br1110.9 (3)
O2—C8—H8B109.5C12—C16—H16A109.5
H8A—C8—H8B109.5Br1—C16—H16A109.5
O2—C8—H8C109.5C12—C16—H16B109.5
H8A—C8—H8C109.5Br1—C16—H16B109.5
H8B—C8—H8C109.5H16A—C16—H16B108.1
O3—C9—C10107.6 (3)C4—O2—C8117.4 (3)
O3—C9—H9A110.2C5—O3—C9116.2 (3)
C10—C9—H9A110.2
O1—C1—C2—C7−178.7 (4)C15—C10—C11—C12−0.4 (6)
O1—C1—C2—C34.6 (7)C9—C10—C11—C12−178.8 (4)
C7—C2—C3—C4−1.3 (6)C10—C11—C12—C130.8 (6)
C1—C2—C3—C4175.4 (4)C10—C11—C12—C16179.7 (4)
C2—C3—C4—O2−177.8 (4)C11—C12—C13—C14−0.8 (6)
C2—C3—C4—C5−0.3 (6)C16—C12—C13—C14−179.7 (4)
O2—C4—C5—O30.2 (5)C12—C13—C14—C150.3 (6)
C3—C4—C5—O3−177.6 (3)C13—C14—C15—C100.1 (6)
O2—C4—C5—C6179.9 (4)C11—C10—C15—C14−0.1 (6)
C3—C4—C5—C62.1 (6)C9—C10—C15—C14178.3 (4)
O3—C5—C6—C7177.3 (4)C13—C12—C16—Br1100.3 (5)
C4—C5—C6—C7−2.5 (6)C11—C12—C16—Br1−78.6 (5)
C3—C2—C7—C61.0 (6)C3—C4—O2—C8−5.1 (6)
C1—C2—C7—C6−175.8 (4)C5—C4—O2—C8177.3 (4)
C5—C6—C7—C20.9 (6)C6—C5—O3—C9−1.7 (6)
O3—C9—C10—C11−104.6 (4)C4—C5—O3—C9178.0 (3)
O3—C9—C10—C1577.0 (5)C10—C9—O3—C5−172.1 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5019).

References

  • Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, Y.-J., Shiao, M.-S., Hsu, M.-L., Tsai, T.-H. & Wang, S.-Y. (2001). J. Agric. Food Chem.49, 5615–5619. [PubMed]
  • Demestre, M., Messerli, S. M., Celli, N., Shahhossini, M., Kluwe, L., Mautner, V. & Maruta, H. (2009). Phytother. Res.23, 226–230. [PubMed]
  • Jin, L., Wang, G.-Z. & Zhou, C.-H. (2009). Acta Cryst. E65, o2164. [PMC free article] [PubMed]
  • Liao, H.-F., Chen, Y.-Y., Liu, J.-J., Hsu, M.-L., Shieh, H.-J., Liao, H.-J., Shieh, C.-J., Shiao, M.-S. & Chen, Y.-J. (2003). J. Agric. Food Chem.51, 7907–7912. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xia, C.-N. & Hu, W.-X. (2004). Chin. J. Synth. Chem.12, 545–550.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography