PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o913.
Published online 2010 March 24. doi:  10.1107/S1600536810009451
PMCID: PMC2983757

Methyl 2-(2-hydroxy­acetamido)benzoate

Abstract

The title compound, C10H11NO4, was formed from 4,1-benzoxazepine-2,5(1H,3H)-dione and ammonia gas. Intra­molecular hydrogen bonding is present between the amide N—H group and the carbonyl O atom of the ester group. The crystal structure features inter­molecular O—H(...)O hydrogen bonds.

Related literature

For the pharmagological activity of different quinazolinones, see: Kenichi et al. (1985 [triangle]); Lyle (1985a [triangle],b [triangle]); Mhaske & Argade (2006 [triangle]); Xia et al. (2001 [triangle]). For details of the synthesis, see: Iacobelli et al. (1965 [triangle]); Uskokovic et al. (1964 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o913-scheme1.jpg

Experimental

Crystal data

  • C10H11NO4
  • M r = 209.20
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o913-efi1.jpg
  • a = 3.938 (2) Å
  • b = 8.808 (4) Å
  • c = 27.94 (4) Å
  • V = 969.1 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 299 K
  • 0.60 × 0.13 × 0.07 mm

Data collection

  • Nonius KappaCCD diffractometer
  • 7794 measured reflections
  • 1107 independent reflections
  • 846 reflections with I > 2σ(I)
  • R int = 0.104

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.127
  • S = 1.12
  • 1107 reflections
  • 137 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: COLLECT (Nonius, 1999 [triangle]); cell refinement: DIRAX (Duisenberg, 1992 [triangle]); data reduction: EVALCCD (Duisenberg et al., 2003 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810009451/om2318sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810009451/om2318Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

NK is grateful to the Pakistan Science Foundation for financial assistance for the research work. The Swedish Research Council (VR) is acknowledged for providing funding for the diffractometer.

supplementary crystallographic information

Comment

4,1-Benzoxazepin-2,5-diones are synthetic heterocyclic compounds that can be converted to quinazolinones which have a broad range of pharmacological activities (Xia et al., 2001; Kenichi et al., 1985; Lyle, 1985a,b; Mhaske & Argade, 2006). The title compound (I) (Fig. 1) was formed in a ring-cleaving reaction of 4,1-benzoxazepin-2,5-dione and gaseous ammonia (Fig. 2), instead of the expected ring contraction product i.e.quinazolinone. The crystal packing of the title compound is stabilized by intermolecular O–H···O bonding. Additionally, intramolecular N–H···O bonds are present.

Experimental

4,1-benzoxazepin-2,5(1H,3H)-dione was prepared from the corresponding 2-[(2-chloroethanoyl)amino]benzoic acid (Iacobelli et al., 1965). Ammonia gas was passed through the suspension of 4,1-benzoxazepin-2,5(1H,3H)-dione (3 g, 0.0169 mole) in dry methanol (400 ml) for three hours and kept at room temperature for seven days. After workup according to reported procedure (Uskokovic et al., 1964) the residue was collected and recrystallized from methanol to give the title compound (I), m.p. 161 °C, yield 31%, Rf 0.76 acetone / benzene (3:7). The undissolved part was recrystallized from hot water to give 2-(1-hydroxymethyl)-4(3H)-quinazolinone, m.p. 214 °C; yield 16%, Rf 0.35 acetone / benzene (3:7).

Refinement

Due to the absence of significant anomalous dispersion, 662 Friedel pairs were merged prior to refinement. H atoms attached to the phenyl group and the methylene group were located in the Fourier map (C–H=0.98–1.04 Å (aromatic), C–H=0.96–1.06 Å (methylene)). All other H atoms were placed at calculated positions (C–H = 0.96 (methyl), N – H=0.90 Å, O–H = 0.90 Å). All atoms were refined as riding on the respective carrier atom.

Figures

Fig. 1.
Ellipsoid plot.
Fig. 2.
The prepapration of the title compound.

Crystal data

C10H11NO4F(000) = 440
Mr = 209.20Dx = 1.434 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 20 reflections
a = 3.938 (2) Åθ = 5.9–19.1°
b = 8.808 (4) ŵ = 0.11 mm1
c = 27.94 (4) ÅT = 299 K
V = 969.1 (15) Å3Needle, colourless
Z = 40.60 × 0.13 × 0.07 mm

Data collection

Nonius KappaCCD diffractometerRint = 0.104
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 4.6°
[var phi] and ω scansh = −4→4
7794 measured reflectionsk = −10→10
1107 independent reflectionsl = −33→33
846 reflections with I > 2σ(I)

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.127w = 1/[σ2(Fo2) + (0.0491P)2 + 0.4762P] where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
1107 reflectionsΔρmax = 0.18 e Å3
137 parametersΔρmin = −0.21 e Å3
0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.9247 (10)0.4009 (4)0.09627 (12)0.0331 (9)
C21.0237 (11)0.3866 (4)0.04884 (13)0.0425 (10)
C31.1821 (12)0.5015 (5)0.02483 (13)0.0467 (11)
C41.2470 (12)0.6356 (5)0.04868 (14)0.0468 (11)
C51.1577 (11)0.6541 (4)0.09563 (13)0.0421 (10)
C60.9931 (9)0.5380 (4)0.12037 (12)0.0338 (9)
C70.9656 (11)0.6678 (4)0.19938 (13)0.0382 (10)
C80.8338 (11)0.6424 (4)0.24887 (13)0.0429 (10)
C90.7492 (10)0.2746 (4)0.12057 (13)0.0368 (9)
C100.5821 (14)0.0186 (4)0.11595 (17)0.0627 (14)
N10.8981 (9)0.5541 (3)0.16834 (10)0.0367 (8)
O10.6276 (7)0.5119 (3)0.25294 (8)0.0482 (8)
O21.1235 (9)0.7833 (3)0.18947 (9)0.0545 (9)
O30.6172 (9)0.2797 (3)0.15945 (10)0.0546 (8)
O40.7495 (8)0.1475 (3)0.09478 (9)0.0529 (8)
H20.96310.29430.03120.051*
H31.25680.4854−0.01040.056*
H41.38790.71480.03170.056*
H51.20630.75590.11210.051*
H8A0.68600.73780.25950.051*
H8B1.02390.62570.26950.051*
H10A0.7049−0.01320.14390.075*
H10B0.5749−0.06310.09320.075*
H10C0.35480.04620.12480.075*
H1N0.74020.48620.17740.044*
H10.74630.43320.26470.058*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.038 (2)0.0260 (18)0.0351 (17)0.0004 (18)−0.0033 (18)0.0036 (15)
C20.050 (3)0.037 (2)0.041 (2)−0.002 (2)−0.003 (2)−0.0059 (17)
C30.055 (3)0.049 (2)0.0360 (18)0.002 (2)0.004 (2)0.002 (2)
C40.052 (3)0.043 (2)0.045 (2)−0.005 (2)0.005 (2)0.0112 (19)
C50.050 (3)0.032 (2)0.044 (2)−0.008 (2)0.002 (2)0.0064 (18)
C60.033 (2)0.034 (2)0.0344 (17)−0.0008 (18)−0.0028 (17)0.0025 (16)
C70.042 (2)0.0298 (19)0.043 (2)0.002 (2)−0.0050 (18)−0.0055 (17)
C80.046 (2)0.040 (2)0.0422 (19)0.005 (2)−0.001 (2)−0.0041 (18)
C90.039 (2)0.0304 (19)0.0405 (19)−0.0024 (19)−0.005 (2)−0.0016 (17)
C100.075 (4)0.030 (2)0.083 (3)−0.015 (3)0.006 (3)0.001 (2)
N10.0444 (19)0.0288 (15)0.0370 (15)−0.0097 (17)0.0031 (16)−0.0025 (13)
O10.060 (2)0.0346 (14)0.0502 (14)0.0024 (16)0.0045 (16)0.0060 (13)
O20.079 (2)0.0317 (14)0.0528 (15)−0.0158 (18)0.0039 (17)−0.0075 (13)
O30.079 (2)0.0363 (14)0.0487 (15)−0.0143 (18)0.0146 (17)−0.0024 (13)
O40.073 (2)0.0281 (14)0.0577 (16)−0.0129 (15)0.0110 (17)−0.0084 (13)

Geometric parameters (Å, °)

C1—C21.387 (5)C9—O41.331 (4)
C1—C61.409 (5)C10—O41.440 (5)
C1—C91.475 (5)C2—H20.9802
C2—C31.365 (5)C3—H31.0375
C3—C41.380 (6)C4—H41.0097
C4—C51.368 (5)C5—H51.0250
C5—C61.394 (5)C8—H8A1.0646
C6—N11.399 (5)C8—H8B0.9558
C7—O21.224 (4)C10—H10A0.9600
C7—N11.351 (5)C10—H10B0.9600
C7—C81.493 (5)C10—H10C0.9600
C8—O11.412 (5)N1—H1N0.8989
C9—O31.205 (4)O1—H10.8986
C2—C1—C6118.7 (3)C2—C3—H3119.7
C2—C1—C9120.2 (3)C4—C3—H3121.5
C6—C1—C9121.1 (3)C5—C4—H4120.6
C3—C2—C1122.1 (4)C3—C4—H4117.8
C2—C3—C4118.8 (3)C4—C5—H5119.0
C5—C4—C3121.1 (4)C6—C5—H5120.4
C4—C5—C6120.5 (4)O1—C8—H8A107.8
C5—C6—N1121.7 (3)C7—C8—H8A109.4
C5—C6—C1118.8 (3)O1—C8—H8B106.0
N1—C6—C1119.5 (3)C7—C8—H8B108.0
O2—C7—N1124.8 (3)H8A—C8—H8B112.4
O2—C7—C8120.7 (3)O4—C10—H10A109.5
N1—C7—C8114.5 (3)O4—C10—H10B109.5
O1—C8—C7113.3 (3)H10A—C10—H10B109.5
O3—C9—O4121.4 (3)O4—C10—H10C109.5
O3—C9—C1126.0 (3)H10A—C10—H10C109.5
O4—C9—C1112.6 (3)H10B—C10—H10C109.5
C7—N1—C6129.6 (3)C7—N1—H1N116.6
C9—O4—C10116.1 (3)C6—N1—H1N112.8
C3—C2—H2118.6C8—O1—H1111.0
C1—C2—H2119.1

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.901.952.669 (4)136
O1—H1···O2i0.901.912.758 (4)157

Symmetry codes: (i) −x+2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2318).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Duisenberg, A. J. M. (1992). J. Appl. Cryst.25, 92–96.
  • Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst.36, 220–229.
  • Iacobelli, J., Uskokovic, M. & Wenner, W. (1965). J. Heterocycl. Chem, 2, 323–325.
  • Kenichi, O., Yoshihisa, Y., Toyonari, O., Toru, I. & Yoshio, I. (1985). J. Med. Chem.28, 568–576.
  • Lyle, F. R. (1985a). US Patent 5 973 257.
  • Lyle, F. R. (1985b). Chem. Abstr.65, 2870.
  • Mhaske, S. B. & Argade, N. P. (2006). Tetrahedron, 62, 9787–9826.
  • Nonius (1999). COLLECT Nonius BV, Delft, The Netherlands.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Uskokovic, M., Iacobelli, J., Toome, V. & Wenner, W. (1964). J. Org. Chem.29, 582–584.
  • Westrip, S. P. (2010). publCIF In preparation.
  • Xia, Y., Yang, Z. Y., Hour, M. J., Kuo, S. C., Xia, P., Bastow, K. F., Nakanishi, Y., Nampoothiri, P., Hackl, T., Hamel, E. & Lee, K. H. (2001). Bioorg. Med. Chem. Lett.11, 1193–1196. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography