PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): m293.
Published online 2010 February 13. doi:  10.1107/S1600536810005222
PMCID: PMC2983754

Poly[trans-diaqua­bis[μ-3-(3-pyrid­yl)propionato-κ2 N,O]cadmium(II)]

Abstract

The title compound [Cd(L)2(H2O)2]n (L = 3-pyridine­propionic acid, C8H8NO2), is a two-dimensional coordination polymer in which the CdII ion lies on an inversion center and is coordinated in a slightly distorted octa­hedral environment. The aqua H atoms are involved in inter­molecular O–H(...)O hydrogen bonds, which extend the two-dimensional structure to a three-dimensional architecture. The Cd(...)Cd separation within a layer is 9.0031 (1) Å.

Related literature

For the isostructural zinc analog, see: Wang et al. (2006 [triangle]) and for the cobalt and nickel analogs, see: Martin et al. (2007 [triangle]). For background information on coordination polymers, see: Batten et al. (2009 [triangle]); Lu (2003 [triangle]); Perry et al. (2009 [triangle]); Robin & Fromm (2006 [triangle]). For coordination polymers based on pyridine carboxyl­ates, see: Huh & Lee (2006 [triangle], 2007 [triangle], 2008 [triangle]); Kim et al. (2007 [triangle]); Min et al. (2001 [triangle], 2002 [triangle]); Min & Lee (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m293-scheme1.jpg

Experimental

Crystal data

  • [Cd(C8H8NO2)2(H2O)2]
  • M r = 448.74
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m293-efi1.jpg
  • a = 9.6934 (4) Å
  • b = 8.9082 (4) Å
  • c = 10.1199 (5) Å
  • β = 104.309 (2)°
  • V = 846.75 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.33 mm−1
  • T = 296 K
  • 0.42 × 0.38 × 0.28 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.606, T max = 0.708
  • 12941 measured reflections
  • 2113 independent reflections
  • 1911 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.016
  • wR(F 2) = 0.042
  • S = 1.05
  • 2113 reflections
  • 155 parameters
  • All H-atom parameters refined
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810005222/lh2993sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005222/lh2993Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2009–007996).

supplementary crystallographic information

Comment

Coordination polymers have gained attention due to their desirable properties applicable to size-selective adsorption, gas storage, host–guest recognition, catalysis, and photoluminescence (Batten et al., 2009; Perry IV et al., 2009; Robin & Fromm, 2006). We have been continually interested in the preparation, structures, and properties of coordination polymers based on the linking ligands of pyridine carboxylate derivatives, in which the carboxylate groups are directly attached to the pyridine ring (Huh & Lee, 2006; Huh & Lee, 2007; Huh & Lee, 2008; Kim et al., 2007; Min et al., 2001; Min et al., 2002; Min & Lee, 2002).

Linking ligands containing both N-donors and O-donors are frequently used for the construction of coordination polymers (Lu, 2003). In particular, silver, copper, zinc, cobalt, and nickel coordination polymers containing 3-pyridinepropionic acid as a linking ligand have been reported (Wang et al., 2006; Martin et al., 2007). This ligand has an enthylene (–CH2–CH2–) spacer between the pyridyl and carboxylate groups and therefore is flexible. As an extension of our study, we investigated the preparation of cadmium coordination polymers by employing this ligand.

The title compound is isostructural with the zinc (Wang et al., 2006), cobalt, and nickel (Martin et al., 2007) analogs with the empirical formula [Cd(L)2(H2O)2] (L = 3-pyridinepropionic acid). The local coordination environment around the Cd atom and the atom-numbering scheme is shown in Fig. 1. The asymmetric unit consists of one half CdII ion, one L ligand, and one aqua ligand. The CdII ion lies on a crystallographic inversion center, and the remaining atoms occupy general positions. The coordination environment of the CdII ion is slightly-distorted octahedral. The monomer units [Cd(L)2(H2O)2] are linked by covalent bonds (Cd–N and Cd–O) to form a 2-D layer approximately in the (101) plane (Fig. 2) and then extended into a 3-D architecture by hydrogen bonding. Two carboxylate O atoms (O2 and O3) act differently. Whereas O2 acts as a H-bond acceptor to the aqua ligands in the neighboring units, O3 is coordinated to the Cd metal to contribute to the formation of the 2-D layer, in which the Cd···Cd separation is 9.0031 (1) Å.

Experimental

A mixture of 3-pyridinepropionic acid (0.98 g, 6.5 mmol), [Cd(NO3)2]6(H2O) (1 g, 3.2 mmol), NaOH (6.5 mmol), and H2O (6 ml) was heated at 453 K for 2 days in a 23 ml Teflon-lined stainless-steel autoclave and then cooled slowly to room temperature to obtain pale yellow crystals. The product was collected by filtration, washed with H2O (3 × 10 ml) and ethanol (5 × 10 ml), and then air-dried. (1.18 g, 2.6 mmol, 82%). mp: 538–540 K. IR (KBr, cm-1): 3199 (s), 2173 (w), 1606 (s), 1302 (w), 1247 (w), 1201 (w), 1117 (m), 1047 (m), 961 (s), 607 (s)

Refinement

All H atoms were located and refined isotropically.

Figures

Fig. 1.
Local coordination environment around the Cd metal in the title compound showing 50% probability displacement ellipsoids (symmetry codes: (A) -x + 1, -y, -z, (B) -x + 1/2, y - 1/2, -z + 1/2, (C) x + 1/2, -y + 1/2, z - 1/2.
Fig. 2.
Packing diagram of the title compound, showing a two-dimensional network.

Crystal data

[Cd(C8H8NO2)2(H2O)2]F(000) = 452
Mr = 448.74Dx = 1.760 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8598 reflections
a = 9.6934 (4) Åθ = 2.6–28.4°
b = 8.9082 (4) ŵ = 1.33 mm1
c = 10.1199 (5) ÅT = 296 K
β = 104.309 (2)°Block, colourless
V = 846.75 (7) Å30.42 × 0.38 × 0.28 mm
Z = 2

Data collection

Bruker SMART CCD diffractometer2113 independent reflections
Radiation source: sealed tube1911 reflections with I > 2σ(I)
graphiteRint = 0.021
[var phi] and ω scansθmax = 28.4°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.606, Tmax = 0.708k = −11→11
12941 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.042All H-atom parameters refined
S = 1.05w = 1/[σ2(Fo2) + (0.0233P)2 + 0.1949P] where P = (Fo2 + 2Fc2)/3
2113 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.50000.00000.00000.02437 (5)
N10.28876 (11)0.07564 (12)0.05233 (11)0.0301 (2)
O10.61972 (13)0.02896 (15)0.22844 (12)0.0382 (2)
O20.21558 (10)0.21211 (11)0.63186 (10)0.0359 (2)
O30.04577 (10)0.26152 (10)0.44405 (10)0.0352 (2)
C10.20346 (15)0.17483 (15)−0.02640 (14)0.0329 (3)
C20.07951 (16)0.22538 (17)0.00161 (16)0.0379 (3)
C30.04061 (15)0.16952 (16)0.11451 (15)0.0357 (3)
C40.12544 (13)0.06336 (15)0.19621 (13)0.0284 (3)
C50.24972 (16)0.02120 (15)0.16092 (16)0.0303 (3)
C60.08326 (19)−0.01072 (15)0.31409 (17)0.0345 (3)
C70.17242 (17)0.03087 (17)0.45527 (15)0.0325 (3)
C80.14245 (13)0.18100 (13)0.51422 (13)0.0260 (2)
H10.2335 (18)0.208 (2)−0.1008 (18)0.042 (4)*
H20.0224 (18)0.296 (2)−0.0590 (18)0.043 (4)*
H3−0.0467 (19)0.199 (2)0.1376 (18)0.050 (5)*
H50.314 (2)−0.048 (2)0.2165 (19)0.044 (5)*
H6A−0.022 (2)0.0146 (17)0.302 (2)0.045 (6)*
H6B0.0908 (17)−0.1217 (19)0.3076 (17)0.039 (4)*
H7A0.274 (3)0.037 (3)0.460 (2)0.059 (6)*
H7B0.158 (2)−0.041 (2)0.525 (2)0.045 (5)*
HO1A0.673 (2)0.105 (3)0.217 (2)0.066 (7)*
HO1B0.672 (3)−0.041 (3)0.266 (3)0.065 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.02423 (8)0.02733 (8)0.02284 (8)−0.00074 (4)0.00826 (5)−0.00185 (4)
N10.0303 (5)0.0323 (6)0.0310 (6)0.0030 (4)0.0137 (4)0.0022 (4)
O10.0427 (6)0.0401 (6)0.0278 (5)−0.0014 (5)0.0011 (5)−0.0019 (4)
O20.0375 (5)0.0343 (5)0.0338 (5)0.0007 (4)0.0047 (4)−0.0022 (4)
O30.0369 (5)0.0296 (5)0.0372 (5)0.0071 (4)0.0055 (4)−0.0010 (4)
C10.0388 (7)0.0314 (6)0.0303 (7)0.0007 (5)0.0120 (6)0.0035 (5)
C20.0378 (7)0.0357 (7)0.0387 (8)0.0090 (6)0.0064 (6)0.0053 (6)
C30.0293 (6)0.0380 (7)0.0413 (8)0.0047 (5)0.0119 (6)−0.0040 (6)
C40.0309 (6)0.0288 (6)0.0281 (6)−0.0039 (5)0.0120 (5)−0.0049 (5)
C50.0317 (7)0.0316 (7)0.0295 (7)0.0043 (5)0.0114 (6)0.0036 (5)
C60.0407 (8)0.0357 (8)0.0318 (8)−0.0082 (5)0.0178 (6)−0.0043 (5)
C70.0385 (8)0.0323 (6)0.0286 (7)0.0063 (6)0.0120 (6)0.0010 (5)
C80.0265 (6)0.0252 (6)0.0294 (6)−0.0013 (4)0.0126 (5)0.0024 (5)

Geometric parameters (Å, °)

Cd1—O3i2.2704 (9)C1—H10.919 (18)
Cd1—O3ii2.2705 (9)C2—C31.381 (2)
Cd1—O12.3306 (11)C2—H20.954 (17)
Cd1—O1iii2.3306 (11)C3—C41.385 (2)
Cd1—N1iii2.3374 (10)C3—H30.969 (18)
Cd1—N12.3374 (10)C4—C51.3902 (18)
N1—C11.3318 (17)C4—C61.5055 (19)
N1—C51.3385 (18)C5—H50.96 (2)
O1—HO1A0.88 (2)C6—C71.522 (2)
O1—HO1B0.83 (3)C6—H6A1.03 (2)
O2—C81.2568 (15)C6—H6B0.995 (17)
O3—C81.2522 (15)C7—C81.5213 (19)
O3—Cd1iv2.2705 (9)C7—H7A0.98 (2)
C1—C21.3766 (19)C7—H7B0.99 (2)
O3i—Cd1—O3ii180.0C1—C2—H2118.7 (11)
O3i—Cd1—O186.35 (4)C3—C2—H2122.4 (11)
O3ii—Cd1—O193.65 (4)C2—C3—C4119.78 (12)
O3i—Cd1—O1iii93.65 (4)C2—C3—H3122.3 (11)
O3ii—Cd1—O1iii86.35 (4)C4—C3—H3117.9 (11)
O1—Cd1—O1iii180.00 (3)C3—C4—C5117.09 (12)
O3i—Cd1—N1iii91.31 (4)C3—C4—C6122.34 (12)
O3ii—Cd1—N1iii88.69 (4)C5—C4—C6120.49 (13)
O1—Cd1—N1iii90.42 (4)N1—C5—C4123.49 (13)
O1iii—Cd1—N1iii89.58 (4)N1—C5—H5116.2 (11)
O3i—Cd1—N188.69 (4)C4—C5—H5120.3 (11)
O3ii—Cd1—N191.31 (4)C4—C6—C7115.77 (12)
O1—Cd1—N189.58 (4)C4—C6—H6A105.5 (12)
O1iii—Cd1—N190.42 (4)C7—C6—H6A112.2 (13)
N1iii—Cd1—N1180.00 (5)C4—C6—H6B110.2 (10)
C1—N1—C5118.16 (11)C7—C6—H6B105.7 (9)
C1—N1—Cd1120.32 (9)H6A—C6—H6B107.3 (13)
C5—N1—Cd1121.52 (9)C8—C7—C6117.58 (12)
Cd1—O1—HO1A97.1 (14)C8—C7—H7A102.6 (13)
Cd1—O1—HO1B118.0 (18)C6—C7—H7A113.1 (14)
HO1A—O1—HO1B109 (2)C8—C7—H7B102.8 (12)
C8—O3—Cd1iv124.02 (8)C6—C7—H7B111.3 (12)
N1—C1—C2122.56 (13)H7A—C7—H7B108.6 (17)
N1—C1—H1115.2 (11)O3—C8—O2125.36 (12)
C2—C1—H1122.3 (11)O3—C8—C7118.03 (12)
C1—C2—C3118.88 (13)O2—C8—C7116.59 (11)

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x+1/2, −y+1/2, z−1/2; (iii) −x+1, −y, −z; (iv) −x+1/2, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—HO1B···O2v0.83 (3)2.01 (3)2.8361 (16)174 (2)
O1—HO1A···O2ii0.88 (2)1.94 (2)2.7546 (17)155 (2)

Symmetry codes: (v) −x+1, −y, −z+1; (ii) x+1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2993).

References

  • Batten, S. R., Neville, S. M. & Turner, D. R. (2009). Coordination Polymers: Design, Analysis and Application, Cambridge: The Royal Society of Chemistry.
  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Huh, H. S. & Lee, S. W. (2006). Bull. Korean Chem. Soc.27, 1839–1843.
  • Huh, H. S. & Lee, S. W. (2007). J. Mol. Struct.829, 44–50.
  • Huh, H. S. & Lee, S. W. (2008). Bull. Korean Chem. Soc.29, 2383–2389.
  • Kim, S. H., Huh, H. S. & Lee, S. W. (2007). J. Mol. Struct.841, 78–87.
  • Lu, J. Y. (2003). Coord. Chem. Rev.246, 327–347.
  • Martin, D. P., Springsteen, C. H. & LaDuca, R. L. (2007). Inorg. Chim. Acta, 360, 599–606.
  • Min, D. & Lee, S. W. (2002). Inorg. Chem. Commun.5, 978–983.
  • Min, D., Yoon, S. S., Jung, D.-Y., Lee, C. Y., Kim, Y., Han, W. S. & Lee, S. W. (2001). Inorg. Chim. Acta, 324, 293–299.
  • Min, D., Yoon, S. S. & Lee, S. W. (2002). Inorg. Chem. Commun.5, 143–146.
  • Perry IV, J. J., Perman, J. A. & Zaworotko, M. J. (2009). Chem. Soc. Rev.38, 1400–1417. [PubMed]
  • Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev.250, 2127–2157.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, Y.-H., Suen, M.-C., Lee, H.-T. & Wang, J.-C. (2006). Polyhedron, 25, 2944–2952.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography