PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): m345.
Published online 2010 February 27. doi:  10.1107/S1600536810006860
PMCID: PMC2983749

3-Phenyl­pyridinium tetra­chlorido­aurate(III)

Abstract

In the title mol­ecular salt, (C11H10N)[AuCl4], the AuIII atom adopts an almost regular square-planar coordination geometry and the dihedral angle between the aromatic rings of the 3-phenyl­pyridinium cation is 23.1 (3)°. In the crystal, the ions inter­act by way of N—H(...)Cl and C—H(...)Cl hydrogen bonds.

Related literature

For related structures, see: Calleja et al. (2001 [triangle]); Faza­eli et al. (2010 [triangle]); Hasan et al. (1999 [triangle]); Hojjat Kashani et al. (2008 [triangle]); Johnson & Steed (1998 [triangle]); Safari et al. (2009 [triangle]); Yap et al. (1995 [triangle]); Yıldırım, Akkurt, Safari, Abedi et al. (2009 [triangle]); Yıldırım, Akkurt, Safari, Amani & McKee (2009 [triangle]); Zhang et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m345-scheme1.jpg

Experimental

Crystal data

  • (C11H10N)[AuCl4]
  • M r = 494.97
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m345-efi1.jpg
  • a = 7.7629 (9) Å
  • b = 8.5901 (11) Å
  • c = 11.0530 (15) Å
  • α = 94.106 (11)°
  • β = 107.125 (10)°
  • γ = 97.216 (10)°
  • V = 694.20 (15) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 11.34 mm−1
  • T = 298 K
  • 0.40 × 0.35 × 0.28 mm

Data collection

  • Stoe IPDSII diffractometer
  • Absorption correction: numerical (X-RED; Stoe & Cie, 2005 [triangle]) T min = 0.067, T max = 0.180
  • 7980 measured reflections
  • 3688 independent reflections
  • 3513 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.083
  • S = 1.15
  • 3688 reflections
  • 154 parameters
  • H-atom parameters constrained
  • Δρmax = 1.19 e Å−3
  • Δρmin = −1.85 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810006860/hb5341sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006860/hb5341Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Graduate Study Councils of Shahid Beheshti University for financial support (Project 600/1555).

supplementary crystallographic information

Comment

There are several proton transfer systems using HAuCl4 with proton acceptor molecules, such as [EMI][AuCl4], (II) and [BMI]2[AuCl4].2H2O, (III), (Hasan et al., 1999), [H2bipy][AuCl4][Cl], (IV), (Zhang et al., 2006), [H7O3][15-crown-5][AuCl4], (V) and [H5O2][benzo-15-crown-5]2[AuCl4], (VI), (Johnson & Steed, 1998), [H5O2]2[12-crown-4]2[AuCl4]2, (VII), [H3O][18-crown-6][AuCl4], (VIII) and [H3O][4-nitrobenzo-18-crown-6][AuCl4], (IX), (Calleja et al., 2001), [DPpy.H][AuCl4], (X), (Yap et al., 1995),[H2DA18C6][AuCl4].2H2O, (XI), (Hojjat Kashani et al., 2008), [dafonium][dafone][AuCl4], (XII), (Safari et al., 2009), [pz(py)2.H][AuCl4], (XIII), (Yıldırım, Akkurt, Safari, Amani & McKee 2009), [Ph2Phen.H][AuCl4], (XIV), (Yıldırım, Akkurt, Safari, Abedi et al., 2009) and [TBA]2[AuCl4][Cl], (XV), (Fazaeli et al., 2010) [Where EMI is 1-ethyl-3-methylimidazolium, BMI is 1-butyl-3-methylimidazolium, H2bipy is 2,2'-bipyridinium, DPpy.H is 2,6-diphenylpyridinium, H2DA18C6 is 1,10-diazonia-18-crown-6, dafonium is 9-oxo-4,5-diazafluoren-4-ium, dafone is 4,5-diazafluoren-9-one, pz(py)2.H is 2-(3-pyridin-2-ylpyrazin-2-yl)pyridinium, Ph2Phen.H is 2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolin-1-ium and TBA is tribenzylammonium] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

The molecule of the title compound, (I), (Fig. 1), contains one independent protonated 3-phenylpyridinium cation and one [AuCl4]- anion. The AuIII atom has a squareplanar environment defined by four Cl atoms. In [AuCl4]- anion, the Au—Cl bond lengths and angles (Table 1) are within normal range (II, III, VII, VIII and IX).

In the crystal structure, intermolecular N—H···Cl and C—H···Cl hydrogen bonds (Table 2) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

A solution of 3-phenylpyridine (0.11 g, 0.09 ml, 0.74 mmol) in methanol (5 ml) was added to a solution of HAuCl4.3H2O, (0.29 g, 0.74 mmol) in acetonitrile (15 ml) and the resulting yellow solution was stirred for 30 min at 313 K. Then, it was left to evaporate slowly at room temperature. After five days, yellow blocks of (I) were isolated (yield 0.26 g; 71.0%).

Refinement

All H atoms were positioned geometrically, with C—H=0.93Å for aromatics H and constrained to ride on their parent atoms, with Uiso(H)=1.2Ueq.

Figures

Fig. 1.
The molecular structure of (I). Displacement ellipsoids are drawn at the 40% probability level.
Fig. 2.
Unit-cell packing diagram for (I). Hydrogen bonds are shown as dashed lines.

Crystal data

(C11H10N)[AuCl4]Z = 2
Mr = 494.97F(000) = 460
Triclinic, P1Dx = 2.368 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7629 (9) ÅCell parameters from 984 reflections
b = 8.5901 (11) Åθ = 1.9–29.2°
c = 11.0530 (15) ŵ = 11.34 mm1
α = 94.106 (11)°T = 298 K
β = 107.125 (10)°Block, yellow
γ = 97.216 (10)°0.40 × 0.35 × 0.28 mm
V = 694.20 (15) Å3

Data collection

Stoe IPDS II diffractometer3688 independent reflections
Radiation source: fine-focus sealed tube3513 reflections with I > 2σ(I)
graphiteRint = 0.051
Detector resolution: 0.15 mm pixels mm-1θmax = 29.2°, θmin = 1.9°
rotation method scansh = −10→10
Absorption correction: numerical (X-RED; Stoe & Cie, 2005)k = −11→11
Tmin = 0.067, Tmax = 0.180l = −15→15
7980 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.15w = 1/[σ2(Fo2) + (0.049P)2 + 0.4225P] where P = (Fo2 + 2Fc2)/3
3688 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 1.19 e Å3
0 restraintsΔρmin = −1.85 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3073 (8)0.3645 (7)0.7222 (6)0.0534 (13)
H10.41410.32030.74150.064*
C2−0.0102 (9)0.3328 (8)0.6148 (7)0.0593 (14)
H2−0.11570.26830.56380.071*
C3−0.0149 (8)0.4824 (7)0.6606 (6)0.0556 (13)
H3−0.12420.52290.63950.067*
C40.1433 (8)0.5748 (6)0.7388 (6)0.0487 (11)
H40.13860.67750.76910.058*
C50.3102 (7)0.5176 (6)0.7733 (5)0.0412 (9)
C60.4797 (7)0.6118 (6)0.8579 (5)0.0429 (9)
C70.4751 (9)0.7355 (7)0.9442 (6)0.0556 (13)
H70.36280.75660.94970.067*
C80.6310 (11)0.8273 (9)1.0215 (7)0.0693 (18)
H80.62390.91051.07760.083*
C90.7981 (10)0.7962 (10)1.0160 (7)0.0676 (17)
H90.90420.86001.06690.081*
C100.8084 (9)0.6706 (10)0.9353 (8)0.0721 (19)
H100.92170.64700.93420.087*
C110.6485 (8)0.5781 (8)0.8545 (6)0.0591 (14)
H110.65560.49440.79890.071*
N10.1525 (9)0.2805 (7)0.6455 (6)0.0651 (14)
H1A0.15650.18710.61360.078*
Au10.377224 (19)0.071414 (17)0.338315 (15)0.03590 (7)
Cl10.08562 (18)0.08586 (18)0.33626 (17)0.0559 (3)
Cl20.4746 (2)0.30376 (17)0.46750 (16)0.0571 (3)
Cl30.67028 (17)0.05728 (17)0.34422 (16)0.0509 (3)
Cl40.28061 (19)−0.15918 (17)0.20634 (17)0.0581 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.051 (3)0.046 (3)0.063 (3)0.013 (2)0.019 (2)−0.006 (2)
C20.056 (3)0.052 (3)0.064 (3)−0.004 (2)0.016 (3)−0.002 (3)
C30.046 (3)0.052 (3)0.067 (3)0.008 (2)0.016 (2)0.004 (3)
C40.053 (3)0.039 (2)0.057 (3)0.012 (2)0.019 (2)0.003 (2)
C50.047 (2)0.037 (2)0.045 (2)0.0093 (18)0.0195 (19)0.0048 (17)
C60.046 (2)0.042 (2)0.044 (2)0.0103 (18)0.0162 (19)0.0077 (18)
C70.057 (3)0.054 (3)0.053 (3)0.013 (2)0.014 (2)−0.005 (2)
C80.072 (4)0.066 (4)0.057 (3)0.009 (3)0.004 (3)−0.010 (3)
C90.053 (3)0.078 (4)0.064 (4)0.005 (3)0.007 (3)0.011 (3)
C100.042 (3)0.098 (5)0.075 (4)0.012 (3)0.016 (3)0.011 (4)
C110.050 (3)0.066 (3)0.064 (3)0.012 (3)0.023 (3)−0.001 (3)
N10.071 (3)0.045 (2)0.074 (3)0.011 (2)0.018 (3)−0.011 (2)
Au10.02898 (10)0.03416 (10)0.04446 (11)0.00715 (6)0.01061 (7)0.00261 (7)
Cl10.0343 (5)0.0527 (6)0.0830 (9)0.0122 (5)0.0208 (6)0.0012 (6)
Cl20.0560 (7)0.0460 (6)0.0653 (8)0.0017 (5)0.0195 (6)−0.0122 (6)
Cl30.0307 (5)0.0498 (6)0.0711 (8)0.0074 (4)0.0153 (5)−0.0007 (6)
Cl40.0428 (6)0.0492 (6)0.0737 (9)0.0055 (5)0.0108 (6)−0.0164 (6)

Geometric parameters (Å, °)

C1—N11.333 (8)C7—H70.9300
C1—C51.389 (7)C8—C91.375 (12)
C1—H10.9300C8—H80.9300
C2—N11.351 (9)C9—C101.376 (11)
C2—C31.356 (9)C9—H90.9300
C2—H20.9300C10—C111.403 (9)
C3—C41.384 (8)C10—H100.9300
C3—H30.9300C11—H110.9300
C4—C51.400 (7)N1—H1A0.8600
C4—H40.9300Au1—Cl22.2740 (13)
C5—C61.470 (8)Au1—Cl32.2754 (12)
C6—C111.388 (8)Au1—Cl12.2762 (12)
C6—C71.388 (7)Au1—Cl42.2766 (13)
C7—C81.368 (9)
N1—C1—C5120.5 (5)C7—C8—C9119.8 (7)
N1—C1—H1119.7C7—C8—H8120.1
C5—C1—H1119.7C9—C8—H8120.1
N1—C2—C3117.9 (6)C8—C9—C10120.0 (7)
N1—C2—H2121.0C8—C9—H9120.0
C3—C2—H2121.0C10—C9—H9120.0
C2—C3—C4119.9 (6)C9—C10—C11120.2 (6)
C2—C3—H3120.0C9—C10—H10119.9
C4—C3—H3120.0C11—C10—H10119.9
C3—C4—C5121.7 (5)C6—C11—C10119.8 (6)
C3—C4—H4119.2C6—C11—H11120.1
C5—C4—H4119.2C10—C11—H11120.1
C1—C5—C4115.8 (5)C1—N1—C2124.0 (5)
C1—C5—C6121.2 (5)C1—N1—H1A118.0
C4—C5—C6123.0 (4)C2—N1—H1A118.0
C11—C6—C7118.3 (5)Cl2—Au1—Cl389.51 (5)
C11—C6—C5120.8 (5)Cl2—Au1—Cl189.92 (6)
C7—C6—C5120.8 (5)Cl3—Au1—Cl1178.98 (5)
C8—C7—C6121.8 (6)Cl2—Au1—Cl4179.07 (6)
C8—C7—H7119.1Cl3—Au1—Cl490.20 (5)
C6—C7—H7119.1Cl1—Au1—Cl490.38 (5)
N1—C2—C3—C4−1.5 (10)C11—C6—C7—C82.5 (10)
C2—C3—C4—C5−0.5 (10)C5—C6—C7—C8−178.3 (6)
N1—C1—C5—C4−0.2 (9)C6—C7—C8—C9−1.0 (12)
N1—C1—C5—C6−180.0 (6)C7—C8—C9—C10−1.6 (13)
C3—C4—C5—C11.3 (9)C8—C9—C10—C112.7 (12)
C3—C4—C5—C6−178.9 (5)C7—C6—C11—C10−1.4 (10)
C1—C5—C6—C1123.1 (8)C5—C6—C11—C10179.4 (6)
C4—C5—C6—C11−156.7 (6)C9—C10—C11—C6−1.1 (12)
C1—C5—C6—C7−156.1 (6)C5—C1—N1—C2−1.9 (11)
C4—C5—C6—C724.1 (8)C3—C2—N1—C12.8 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl3i0.862.633.359 (7)143
C1—H1···Cl4i0.932.833.755 (7)175

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5341).

References

  • Calleja, M., Johnson, K., Belcher, W. J. & Steed, W. (2001). Inorg. Chem.40, 4978–4985. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Fazaeli, Y., Amani, V., Amini, M. M. & Khavasi, H. R. (2010). Acta Cryst. E66, m212. [PMC free article] [PubMed]
  • Hasan, M., Kozhevnikov, I. V., Siddiqu, M. R. H., Steiner, A. & Winterton, N. (1999). Inorg. Chem.38, 5637–5641.
  • Hojjat Kashani, L., Yousefi, M., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m840–m841. [PMC free article] [PubMed]
  • Johnson, K. & Steed, J. W. (1998). Chem. Commun. pp. 1479–1480.
  • Safari, N., Amani, V., Notash, B. & Ng, S. W. (2009). Acta Cryst. E65, m344. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2005). X-AREA and X-RED Stoe & Cie, Darmstadt, Germany.
  • Yap, G. P. A., Rheingold, A. R., Das, P. & Crabtree, R. H. (1995). Inorg. Chem.34, 3474–3476.
  • Yıldırım, S. Ö., Akkurt, M., Safari, N., Abedi, A., Amani, V. & McKee, V. (2009). Acta Cryst. E65, m479–m480. [PMC free article] [PubMed]
  • Yıldırım, S. Ö., Akkurt, M., Safari, N., Amani, V. & McKee, V. (2009). Acta Cryst. E65, m491–m492. [PMC free article] [PubMed]
  • Zhang, X.-P., Yang, G. & Ng, S. W. (2006). Acta Cryst. E62, m2018–m2020.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography