PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o695.
Published online 2010 February 27. doi:  10.1107/S1600536810006604
PMCID: PMC2983737

2-(Dihydroxy­meth­yl)pyridinium chloride

Abstract

In the title compound, C6H8NO2 +·Cl, inter­molecular O—H(...)Cl and N—H(...)Cl hydrogen bonds are observed in which each chloride anion links three adjacent cations into a hydrogen-bond network.

Related literature

For a related compound, see Mantero et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o695-scheme1.jpg

Experimental

Crystal data

  • C6H8NO2 +·Cl
  • M r = 161.58
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o695-efi3.jpg
  • a = 4.6879 (7) Å
  • b = 15.557 (2) Å
  • c = 10.1199 (14) Å
  • β = 91.181 (2)°
  • V = 737.88 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.45 mm−1
  • T = 291 K
  • 0.12 × 0.12 × 0.10 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.948, T max = 0.956
  • 3676 measured reflections
  • 1303 independent reflections
  • 842 reflections with I > 2σ(I)
  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.075
  • S = 0.89
  • 1303 reflections
  • 99 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810006604/bg2326sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006604/bg2326Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

WH acknowledges the National Natural Science Foundation of China (No. 20871065) and the Jiangsu Province Department of Science and Technology (No. BK2009226) for financial aid.

supplementary crystallographic information

Comment

The crystal structure of pyridin-4-ylmethanediol, namely the hydrated form of isonicotinaldehyde has been previously reported (Mantero et al., 2006). In this paper, we report the X-ray single-crystal structure of pyridin-2-ylmethanediol-1-ium chloride (I).

The molecular structure of (I) is illustrated in Fig. 1. The two hydroxyl groups lie at the same side of the aromatic ring. In the crystal packing, intermolecular O—H···Cl and N—H···Cl hydrogen bonding interactions are observed where every chloride anion links three adjacent molecules into a hydrogen-bond sustained network (Fig. 2).

Refinement

The H1A atom bonded with atom O1 was located in the difference synthesis and were refined isotropically. The other H atoms were placed in geometrically idealized positions and refined as riding, with C—H = 0.93–0.98 Å, N—H = 0.86 Å and O—H = 0.96 Å, Uiso(H) = 1.2Ueq(C), Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Perspective view of the hydrogen bonding interactions in the crystal packing of (I), where the hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) x - 1, -y+3/2, z + 1/2; (ii) x, y1/2, z + 1; (iii) x, -y+3/2, z + 1/2.]

Crystal data

C6H8NO2+·ClF(000) = 336
Mr = 161.58Dx = 1.455 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 776 reflections
a = 4.6879 (7) Åθ = 2.4–21.0°
b = 15.557 (2) ŵ = 0.45 mm1
c = 10.1199 (14) ÅT = 291 K
β = 91.181 (2)°Block, colourless
V = 737.88 (18) Å30.12 × 0.12 × 0.10 mm
Z = 4

Data collection

Bruker SMART 1K CCD area-detector diffractometer1303 independent reflections
Radiation source: fine-focus sealed tube842 reflections with I > 2σ(I)
graphiteRint = 0.058
[var phi] and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −5→5
Tmin = 0.948, Tmax = 0.956k = −12→18
3676 measured reflectionsl = −12→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 0.89w = 1/[σ2(Fo2) + (0.0272P)2] where P = (Fo2 + 2Fc2)/3
1303 reflections(Δ/σ)max = 0.001
99 parametersΔρmax = 0.22 e Å3
2 restraintsΔρmin = −0.23 e Å3

Special details

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.0342 (4)0.62701 (15)0.8930 (2)0.0395 (6)
C20.1167 (5)0.54999 (16)0.8429 (2)0.0469 (6)
H20.25150.51680.88830.056*
C30.0002 (5)0.52104 (16)0.7246 (2)0.0544 (7)
H30.05490.46810.69060.065*
C4−0.1975 (5)0.57099 (17)0.6572 (2)0.0553 (7)
H4−0.27920.55190.57800.066*
C5−0.2716 (5)0.64860 (17)0.7082 (2)0.0504 (7)
H5−0.40150.68360.66300.060*
C60.1322 (5)0.66291 (15)1.0257 (2)0.0448 (6)
H60.01020.63821.09350.054*
Cl10.51126 (13)0.65293 (4)0.34503 (6)0.0572 (2)
H1A0.442 (6)0.6405 (18)1.1316 (11)0.090 (11)*
H2A0.211 (5)0.7784 (16)0.978 (2)0.080 (11)*
N1−0.1571 (4)0.67433 (12)0.82335 (17)0.0424 (5)
H1−0.20770.72330.85460.051*
O10.4092 (3)0.63308 (12)1.04924 (17)0.0573 (5)
O20.1066 (4)0.75152 (12)1.03217 (17)0.0567 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0371 (13)0.0428 (15)0.0389 (13)−0.0011 (11)0.0022 (11)0.0061 (11)
C20.0486 (14)0.0414 (15)0.0508 (15)0.0054 (12)0.0005 (12)0.0027 (12)
C30.0671 (17)0.0424 (16)0.0537 (17)−0.0014 (14)0.0030 (14)−0.0052 (13)
C40.0661 (18)0.0557 (18)0.0439 (15)−0.0126 (15)−0.0050 (13)−0.0025 (13)
C50.0529 (16)0.0540 (17)0.0441 (15)−0.0023 (13)−0.0062 (12)0.0083 (13)
C60.0431 (14)0.0467 (16)0.0446 (14)0.0032 (13)0.0011 (11)0.0031 (12)
Cl10.0683 (5)0.0469 (4)0.0559 (4)−0.0043 (3)−0.0107 (3)−0.0036 (3)
N10.0464 (12)0.0389 (12)0.0418 (12)0.0010 (10)0.0008 (9)0.0013 (9)
O10.0480 (11)0.0753 (14)0.0483 (12)0.0133 (9)−0.0086 (9)−0.0063 (9)
O20.0670 (13)0.0478 (12)0.0551 (12)0.0021 (10)−0.0013 (10)−0.0084 (9)

Geometric parameters (Å, °)

C1—N11.348 (3)C5—N11.334 (3)
C1—C21.360 (3)C5—H50.9300
C1—C61.518 (3)C6—O21.385 (3)
C2—C31.381 (3)C6—O11.395 (3)
C2—H20.9300C6—H60.9800
C3—C41.379 (3)N1—H10.8600
C3—H30.9300O1—H1A0.852 (10)
C4—C51.361 (3)O2—H2A0.853 (10)
C4—H40.9300
N1—C1—C2118.5 (2)N1—C5—H5120.1
N1—C1—C6116.6 (2)C4—C5—H5120.1
C2—C1—C6124.8 (2)O2—C6—O1113.84 (19)
C1—C2—C3120.0 (2)O2—C6—C1112.52 (18)
C1—C2—H2120.0O1—C6—C1106.99 (18)
C3—C2—H2120.0O2—C6—H6107.7
C4—C3—C2119.6 (2)O1—C6—H6107.7
C4—C3—H3120.2C1—C6—H6107.7
C2—C3—H3120.2C5—N1—C1123.0 (2)
C5—C4—C3119.1 (2)C5—N1—H1118.5
C5—C4—H4120.4C1—N1—H1118.5
C3—C4—H4120.4C6—O1—H1A105.8 (19)
N1—C5—C4119.7 (2)C6—O2—H2A114.0 (19)
N1—C1—C2—C3−1.4 (3)C2—C1—C6—O2157.6 (2)
C6—C1—C2—C3175.9 (2)N1—C1—C6—O1−150.91 (18)
C1—C2—C3—C40.6 (4)C2—C1—C6—O131.8 (3)
C2—C3—C4—C50.8 (4)C4—C5—N1—C10.7 (3)
C3—C4—C5—N1−1.4 (4)C2—C1—N1—C50.7 (3)
N1—C1—C6—O2−25.2 (3)C6—C1—N1—C5−176.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2A···Cl1i0.85 (1)2.24 (1)3.089 (2)176 (2)
O1—H1A···Cl1ii0.85 (1)2.19 (1)3.0374 (18)177 (3)
N1—H1···Cl1iii0.862.333.115 (2)151

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x, y, z+1; (iii) x−1, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2326).

References

  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Mantero, D. G., Altaf, M., Neels, A. & Stoeckli-Evans, H. (2006). Acta Cryst. E62, o5204–o5206.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography