PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o533–o534.
Published online 2010 February 6. doi:  10.1107/S1600536810003867
PMCID: PMC2983731

N-(2-Fluoro­phen­yl)cinnamamide

Abstract

The title compound, C15H12FNO, was prepared by the reaction of cinnamoyl chloride with 4-fluoro­aniline and crystallizes with two mol­ecules A and B in the asymmetric unit. The two unique mol­ecules are closely similar and overlay with an r.m.s. deviation of 0.0819 Å. The fluoro­benzene and phenyl rings are inclined to one another at 73.89 (7) and 79.46 (7)°, respectively, in mol­ecules A and B. The amide C—N—C(O)—C portions of the mol­ecules are planar (r.m.s. deviations = 0.035 and 0.028 Å) and are inclined at 45.51 (9) and 47.71 (9), respectively, to the fluoro­benzene rings in mol­ecules A and B. The 2-fluoro­acetamide units and the benzene rings each adopt E configurations with respect to the C=C bonds. In the crystal structure, inter­molecular N—H(...)O hydrogen bonds augmented by weak C—H(...)π inter­actions link mol­ecules into rows in a head-to-tail fashion along a. Additional weak C—H(...)O contacts further stabilize the packing, forming a three-dimensional network stacked down a.

Related literature

For related structures see: Leiserowitz & Tuval (1978 [triangle]); Nilofar Nissa et al. (2002 [triangle], 2004 [triangle]); Jones & Dix (2008 [triangle]); Saeed et al. (2009 [triangle]). For details of the Cambridge Structural Database: see Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o533-scheme1.jpg

Experimental

Crystal data

  • C15H12FNO
  • M r = 241.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o533-efi1.jpg
  • a = 9.6634 (12) Å
  • b = 13.0838 (17) Å
  • c = 19.404 (3) Å
  • β = 99.297 (7)°
  • V = 2421.0 (5) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 89 K
  • 0.64 × 0.30 × 0.16 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2006 [triangle]) T min = 0.696, T max = 1.000
  • 24964 measured reflections
  • 4376 independent reflections
  • 3312 reflections with I > 2σ(I)
  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.156
  • S = 1.07
  • 4376 reflections
  • 331 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker 2006 [triangle]); cell refinement: APEX2 and SAINT (Bruker 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) and TITAN2000 (Hunter & Simpson, 1999 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and Mercury (Macrae et al., 2008 [triangle]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004 [triangle]), PLATON (Spek, 2009 [triangle]) and publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810003867/hg2641sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003867/hg2641Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge a research grant from the Higher Education Commission of Pakistan under project No. 20-Miscel/R&D/00/3834. We also thank the University of Otago for the purchase of the diffractometer.

supplementary crystallographic information

Comment

The background to this work has been described in a previous paper (Saeed et al. 2009). The title compound, C15H12FNO (I), was prepared by the reaction of cinnamoyl chloride with 4-fluoroaniline. The compound crystallises with two molecules A and B in the asymmetric unit of the monoclinic unit cell. These two unique molecules are closely similar and overlay with an rms deviation of 0.0819Å (Macrae et al., 2008). The fluorobenzene and benzene rings are inclined at 73.89 (7)° and 79.46 (7)° respectively in the two molecules. The amide C10–N1–C1(O1)–C2 portions of the molecules are planar (rms deviations 0.035 and 0.028 Å) and are inclined at 45.51 (9)° and 47.71 (9) respectively to the fluorobenzene rings. The 2-fluoroacetamide units and the benzene rings each adopt E configurations with respect to the C═C bonds. A search of the Cambridge Database (Allen, 2002) reveals only one closely related halobenzene derivative (Nilofar Nissa et al., 2004) but the structures of a number of other cinnamanilide compounds are known (Leiserowitz & Tuval 1978; Nilofar Nissa et al., 2002; Jones & Dix, 2008; Saeed et al., 2009).

In the crystal structure, intermolecular N1A—H1NA···O1B and N1B—H1NB···O1A hydrogen bonds, augmented by weak C–H···π interactions involving the two fluorobenzene rings, link molecules into rows along a, Fig. 2. Additional weak C—H···O contacts further stabilise the packing, forming a three-dimensional network stacked down a, Table 1 & Fig. 3.

Experimental

Cinnamoyl chloride (5.4 mmol) in CHCl3 was treated with 4-fluoroaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 2 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aqueous 1 M HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. Crystallization of the residue from CHCl3 afforded the title compound (87%) as colourless needles: Anal. calcd. for C15H12FNO,: C, 74.67; H, 5.01; N, 5.81%; found: C, 74.69; H, 5.16; N, 5.94%.

Refinement

The H atoms bound to N1A and N1B were located in a difference map and refined isotropically. All other H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso = 1.2Ueq (C).

Figures

Fig. 1.
The asymmetric unit of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
Fig. 2.
N—H···O hydrogen bonds (dashed lines) and weak C–H···π interactions (dotted lines) forming chains down b.
Fig. 3.
Crystal packing for (I) viewed down the a axis with hydrogen bonds drawn as dashed lines.

Crystal data

C15H12FNOF(000) = 1008
Mr = 241.26Dx = 1.324 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5945 reflections
a = 9.6634 (12) Åθ = 2.6–25.1°
b = 13.0838 (17) ŵ = 0.09 mm1
c = 19.404 (3) ÅT = 89 K
β = 99.297 (7)°Block, pale yellow
V = 2421.0 (5) Å30.64 × 0.30 × 0.16 mm
Z = 8

Data collection

Bruker APEXII CCD diffractometer4376 independent reflections
Radiation source: fine-focus sealed tube3312 reflections with I > 2σ(I)
graphiteRint = 0.068
ω scansθmax = 25.3°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2006)h = −11→11
Tmin = 0.696, Tmax = 1.000k = −15→15
24964 measured reflectionsl = −23→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0869P)2 + 1.0345P] where P = (Fo2 + 2Fc2)/3
4376 reflections(Δ/σ)max < 0.001
331 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.36 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N1A0.2567 (2)0.71300 (15)0.02767 (10)0.0190 (4)
H1NA0.342 (3)0.735 (2)0.0245 (12)0.023*
C1A0.1444 (2)0.75857 (17)−0.01166 (11)0.0177 (5)
O1A0.02319 (15)0.72730 (12)−0.01255 (8)0.0220 (4)
C2A0.1794 (2)0.85024 (17)−0.04971 (11)0.0181 (5)
H2A0.27250.8596−0.05850.022*
C3A0.0817 (2)0.92016 (18)−0.07189 (11)0.0199 (5)
H3A−0.01050.9048−0.06390.024*
C4A0.0985 (2)1.01740 (18)−0.10691 (11)0.0191 (5)
C5A−0.0136 (2)1.08608 (18)−0.11720 (12)0.0229 (5)
H5A−0.09911.0685−0.10190.027*
C6A−0.0017 (3)1.18006 (19)−0.14953 (12)0.0251 (6)
H6A−0.07921.2257−0.15640.030*
C7A0.1223 (3)1.20718 (19)−0.17169 (12)0.0245 (5)
H7A0.13031.2712−0.19380.029*
C8A0.2356 (2)1.13992 (19)−0.16129 (11)0.0235 (5)
H8A0.32141.1586−0.17590.028*
C9A0.2240 (2)1.04614 (18)−0.12984 (11)0.0212 (5)
H9A0.30151.0006−0.12360.025*
C10A0.2461 (2)0.63122 (17)0.07449 (12)0.0179 (5)
C11A0.3173 (2)0.63675 (17)0.14283 (12)0.0201 (5)
F1A0.39762 (14)0.72109 (10)0.16188 (7)0.0294 (4)
C12A0.3107 (2)0.56122 (19)0.19135 (12)0.0244 (5)
H12A0.36040.56760.23760.029*
C13A0.2297 (2)0.47516 (19)0.17133 (12)0.0241 (5)
H13A0.22310.42220.20410.029*
C14A0.1585 (2)0.46671 (18)0.10335 (12)0.0216 (5)
H14A0.10410.40750.08960.026*
C15A0.1665 (2)0.54433 (17)0.05545 (12)0.0194 (5)
H15A0.11690.53800.00920.023*
N1B0.7349 (2)0.79010 (15)−0.03553 (10)0.0187 (4)
H1NB0.814 (3)0.769 (2)−0.0341 (13)0.022*
C1B0.6485 (2)0.74513 (17)0.00412 (11)0.0170 (5)
O1B0.52817 (15)0.77646 (12)0.00522 (8)0.0216 (4)
C2B0.7098 (2)0.65447 (17)0.04371 (11)0.0177 (5)
H2B0.80860.64520.05190.021*
C3B0.6277 (2)0.58575 (17)0.06798 (11)0.0184 (5)
H3B0.52990.59940.05940.022*
C4B0.6714 (2)0.49131 (18)0.10655 (11)0.0182 (5)
C5B0.8115 (2)0.47122 (19)0.13481 (12)0.0232 (5)
H5B0.88190.51980.12930.028*
C6B0.8485 (3)0.3814 (2)0.17071 (12)0.0273 (6)
H6B0.94390.36890.18970.033*
C7B0.7465 (3)0.30895 (19)0.17912 (12)0.0276 (6)
H7B0.77230.24700.20340.033*
C8B0.6072 (3)0.32802 (19)0.15172 (12)0.0262 (6)
H8B0.53710.27930.15750.031*
C9B0.5701 (2)0.41858 (18)0.11572 (11)0.0216 (5)
H9B0.47450.43110.09710.026*
C10B0.6938 (2)0.87171 (17)−0.08218 (11)0.0173 (5)
C11B0.7185 (2)0.86597 (18)−0.15059 (12)0.0225 (5)
F1B0.78197 (16)0.78076 (11)−0.17040 (7)0.0351 (4)
C12B0.6818 (2)0.9429 (2)−0.19871 (12)0.0270 (6)
H12B0.69970.9364−0.24520.032*
C13B0.6180 (2)1.02988 (19)−0.17770 (12)0.0246 (5)
H13B0.59181.0837−0.21000.029*
C14B0.5924 (2)1.03851 (18)−0.10960 (12)0.0226 (5)
H14B0.54901.0983−0.09540.027*
C15B0.6303 (2)0.95959 (17)−0.06203 (12)0.0195 (5)
H15B0.61260.9660−0.01550.023*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N1A0.0104 (9)0.0186 (11)0.0287 (10)−0.0008 (7)0.0050 (8)0.0038 (8)
C1A0.0135 (11)0.0178 (12)0.0221 (11)0.0005 (9)0.0041 (8)−0.0030 (9)
O1A0.0112 (8)0.0213 (9)0.0336 (9)−0.0002 (6)0.0035 (6)0.0019 (7)
C2A0.0113 (10)0.0205 (12)0.0229 (11)−0.0017 (9)0.0041 (8)−0.0005 (10)
C3A0.0130 (11)0.0206 (12)0.0263 (11)−0.0028 (9)0.0038 (8)−0.0009 (10)
C4A0.0164 (11)0.0199 (12)0.0204 (11)−0.0013 (9)0.0014 (8)−0.0009 (9)
C5A0.0169 (11)0.0238 (13)0.0277 (12)0.0015 (10)0.0029 (9)−0.0015 (11)
C6A0.0250 (13)0.0222 (13)0.0271 (12)0.0051 (10)0.0006 (10)−0.0016 (10)
C7A0.0327 (14)0.0178 (13)0.0222 (12)−0.0017 (10)0.0015 (10)0.0012 (10)
C8A0.0213 (12)0.0274 (14)0.0222 (11)−0.0066 (10)0.0046 (9)0.0001 (10)
C9A0.0160 (11)0.0238 (13)0.0233 (11)0.0007 (9)0.0020 (9)−0.0001 (10)
C10A0.0092 (10)0.0185 (12)0.0273 (12)0.0032 (8)0.0072 (8)0.0016 (10)
C11A0.0157 (11)0.0159 (12)0.0288 (12)0.0005 (9)0.0037 (9)−0.0022 (10)
F1A0.0282 (8)0.0204 (8)0.0366 (8)−0.0063 (6)−0.0036 (6)−0.0016 (6)
C12A0.0248 (13)0.0236 (13)0.0242 (12)0.0040 (10)0.0024 (9)0.0009 (10)
C13A0.0231 (12)0.0198 (13)0.0306 (13)0.0036 (10)0.0080 (10)0.0067 (10)
C14A0.0171 (11)0.0167 (12)0.0327 (13)0.0005 (9)0.0094 (9)−0.0009 (10)
C15A0.0137 (11)0.0196 (13)0.0256 (12)0.0009 (9)0.0052 (9)0.0003 (10)
N1B0.0106 (9)0.0186 (11)0.0275 (10)0.0030 (8)0.0052 (8)0.0026 (8)
C1B0.0134 (11)0.0169 (12)0.0206 (11)−0.0013 (9)0.0024 (8)−0.0041 (9)
O1B0.0112 (8)0.0215 (9)0.0331 (9)0.0014 (6)0.0063 (6)0.0022 (7)
C2B0.0124 (10)0.0204 (12)0.0202 (11)0.0019 (9)0.0026 (8)−0.0021 (9)
C3B0.0136 (11)0.0195 (12)0.0222 (11)0.0020 (9)0.0034 (8)−0.0017 (10)
C4B0.0165 (11)0.0216 (13)0.0178 (11)0.0021 (9)0.0062 (8)−0.0020 (9)
C5B0.0203 (12)0.0259 (14)0.0245 (12)0.0008 (10)0.0071 (9)0.0037 (10)
C6B0.0230 (13)0.0332 (15)0.0264 (12)0.0073 (11)0.0064 (10)0.0067 (11)
C7B0.0350 (14)0.0224 (14)0.0264 (12)0.0060 (11)0.0085 (10)0.0046 (10)
C8B0.0309 (14)0.0212 (13)0.0279 (12)−0.0049 (10)0.0089 (10)−0.0007 (11)
C9B0.0205 (12)0.0206 (13)0.0241 (11)−0.0006 (9)0.0046 (9)−0.0018 (10)
C10B0.0106 (10)0.0162 (12)0.0246 (11)−0.0028 (8)0.0010 (8)0.0018 (9)
C11B0.0180 (12)0.0197 (13)0.0311 (12)−0.0002 (9)0.0082 (9)−0.0026 (10)
F1B0.0483 (10)0.0259 (8)0.0356 (8)0.0089 (7)0.0202 (7)−0.0006 (7)
C12B0.0280 (13)0.0281 (14)0.0254 (12)−0.0025 (10)0.0058 (10)0.0028 (11)
C13B0.0194 (12)0.0208 (13)0.0323 (13)−0.0034 (9)0.0009 (9)0.0092 (11)
C14B0.0145 (11)0.0174 (12)0.0352 (13)−0.0007 (9)0.0020 (9)0.0005 (10)
C15B0.0137 (11)0.0191 (12)0.0259 (11)−0.0019 (9)0.0038 (9)−0.0005 (10)

Geometric parameters (Å, °)

N1A—C1A1.360 (3)N1B—C1B1.357 (3)
N1A—C10A1.418 (3)N1B—C10B1.414 (3)
N1A—H1NA0.88 (3)N1B—H1NB0.81 (3)
C1A—O1A1.238 (3)C1B—O1B1.237 (3)
C1A—C2A1.476 (3)C1B—C2B1.483 (3)
C2A—C3A1.335 (3)C2B—C3B1.334 (3)
C2A—H2A0.9500C2B—H2B0.9500
C3A—C4A1.464 (3)C3B—C4B1.471 (3)
C3A—H3A0.9500C3B—H3B0.9500
C4A—C5A1.397 (3)C4B—C9B1.397 (3)
C4A—C9A1.408 (3)C4B—C5B1.401 (3)
C5A—C6A1.394 (3)C5B—C6B1.384 (3)
C5A—H5A0.9500C5B—H5B0.9500
C6A—C7A1.384 (3)C6B—C7B1.396 (4)
C6A—H6A0.9500C6B—H6B0.9500
C7A—C8A1.393 (3)C7B—C8B1.388 (3)
C7A—H7A0.9500C7B—H7B0.9500
C8A—C9A1.383 (3)C8B—C9B1.393 (3)
C8A—H8A0.9500C8B—H8B0.9500
C9A—H9A0.9500C9B—H9B0.9500
C10A—C15A1.389 (3)C10B—C11B1.388 (3)
C10A—C11A1.393 (3)C10B—C15B1.389 (3)
C11A—F1A1.365 (3)C11B—F1B1.358 (3)
C11A—C12A1.373 (3)C11B—C12B1.380 (3)
C12A—C13A1.390 (3)C12B—C13B1.386 (4)
C12A—H12A0.9500C12B—H12B0.9500
C13A—C14A1.390 (3)C13B—C14B1.388 (3)
C13A—H13A0.9500C13B—H13B0.9500
C14A—C15A1.387 (3)C14B—C15B1.394 (3)
C14A—H14A0.9500C14B—H14B0.9500
C15A—H15A0.9500C15B—H15B0.9500
C1A—N1A—C10A123.83 (19)C1B—N1B—C10B123.75 (19)
C1A—N1A—H1NA119.1 (16)C1B—N1B—H1NB119.8 (19)
C10A—N1A—H1NA117.1 (16)C10B—N1B—H1NB116.4 (19)
O1A—C1A—N1A122.1 (2)O1B—C1B—N1B122.1 (2)
O1A—C1A—C2A123.66 (19)O1B—C1B—C2B123.6 (2)
N1A—C1A—C2A114.22 (19)N1B—C1B—C2B114.22 (19)
C3A—C2A—C1A120.7 (2)C3B—C2B—C1B120.8 (2)
C3A—C2A—H2A119.6C3B—C2B—H2B119.6
C1A—C2A—H2A119.6C1B—C2B—H2B119.6
C2A—C3A—C4A128.3 (2)C2B—C3B—C4B127.4 (2)
C2A—C3A—H3A115.9C2B—C3B—H3B116.3
C4A—C3A—H3A115.9C4B—C3B—H3B116.3
C5A—C4A—C9A118.1 (2)C9B—C4B—C5B118.4 (2)
C5A—C4A—C3A118.9 (2)C9B—C4B—C3B119.18 (19)
C9A—C4A—C3A123.0 (2)C5B—C4B—C3B122.5 (2)
C6A—C5A—C4A120.9 (2)C6B—C5B—C4B120.8 (2)
C6A—C5A—H5A119.6C6B—C5B—H5B119.6
C4A—C5A—H5A119.6C4B—C5B—H5B119.6
C7A—C6A—C5A120.3 (2)C5B—C6B—C7B120.4 (2)
C7A—C6A—H6A119.8C5B—C6B—H6B119.8
C5A—C6A—H6A119.8C7B—C6B—H6B119.8
C6A—C7A—C8A119.5 (2)C8B—C7B—C6B119.5 (2)
C6A—C7A—H7A120.2C8B—C7B—H7B120.2
C8A—C7A—H7A120.2C6B—C7B—H7B120.2
C9A—C8A—C7A120.4 (2)C7B—C8B—C9B120.0 (2)
C9A—C8A—H8A119.8C7B—C8B—H8B120.0
C7A—C8A—H8A119.8C9B—C8B—H8B120.0
C8A—C9A—C4A120.8 (2)C8B—C9B—C4B120.9 (2)
C8A—C9A—H9A119.6C8B—C9B—H9B119.5
C4A—C9A—H9A119.6C4B—C9B—H9B119.5
C15A—C10A—C11A117.6 (2)C11B—C10B—C15B117.8 (2)
C15A—C10A—N1A122.8 (2)C11B—C10B—N1B119.8 (2)
C11A—C10A—N1A119.7 (2)C15B—C10B—N1B122.4 (2)
F1A—C11A—C12A118.89 (19)F1B—C11B—C12B119.1 (2)
F1A—C11A—C10A118.1 (2)F1B—C11B—C10B118.1 (2)
C12A—C11A—C10A123.0 (2)C12B—C11B—C10B122.8 (2)
C11A—C12A—C13A118.5 (2)C11B—C12B—C13B118.6 (2)
C11A—C12A—H12A120.7C11B—C12B—H12B120.7
C13A—C12A—H12A120.7C13B—C12B—H12B120.7
C14A—C13A—C12A120.0 (2)C12B—C13B—C14B120.2 (2)
C14A—C13A—H13A120.0C12B—C13B—H13B119.9
C12A—C13A—H13A120.0C14B—C13B—H13B119.9
C15A—C14A—C13A120.3 (2)C13B—C14B—C15B120.1 (2)
C15A—C14A—H14A119.8C13B—C14B—H14B119.9
C13A—C14A—H14A119.8C15B—C14B—H14B119.9
C14A—C15A—C10A120.6 (2)C10B—C15B—C14B120.5 (2)
C14A—C15A—H15A119.7C10B—C15B—H15B119.7
C10A—C15A—H15A119.7C14B—C15B—H15B119.7

Hydrogen-bond geometry (Å, °)

CgA and CgB are the centroids of the fluorobenzene rings in molecules A and B respectively.
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1B0.88 (3)1.98 (3)2.851 (2)173 (2)
N1B—H1NB···O1Ai0.81 (3)2.07 (3)2.870 (2)170 (2)
C14A—H14A···O1Aii0.952.503.410 (3)160
C14B—H14B···O1Biii0.952.593.476 (3)155
C9B—H9B···CgAiv0.952.893.679 (2)141
C5A—H5A···CgBv0.952.803.621 (2)149

Symmetry codes: (i) x+1, y, z; (ii) −x, −y+1, −z; (iii) −x+1, −y+2, −z; (iv) x, −y+1/2, z+1/2; (v) x+1, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2641).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hunter, K. A. & Simpson, J. (1999). TITAN2000 University of Otago, New Zealand.
  • Jones, P. G. & Dix, I. (2008). Private communication to the Cambridge Structural Database (deposition No. 694529; refcode DOTPOS). CCDC, Union Road, Cambridge, England
  • Leiserowitz, L. & Tuval, M. (1978). Acta Cryst. B34, 1230–1247.
  • Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  • Nilofar Nissa, M., Aravindan, P. G., Kasinath, V., Gopalakrishnan, G., Merazig, H. & Velmurugan, D. (2004). Cryst. Res. Technol. pp. 643–649.
  • Nilofar Nissa, M., Velmurugan, D., Shanmuga Sundara Raj, D., Fun, H.-K., Kasinath, V. & Gopalakrishnan, G. (2002). Cryst. Res. Technol. pp. 125–133.
  • Saeed, A., Khera, R. A., Shahid, M. & Parvez, M. (2009). Acta Cryst. E65, o2068. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Westrip, S. P. (2010). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography