PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o630–o631.
Published online 2010 February 13. doi:  10.1107/S1600536810005192
PMCID: PMC2983730

(2E,6E)-2,6-Bis(2,4,5-trimethoxy­benzyl­idene)cyclo­hexa­none

Abstract

In the title compound, C26H30O7, one atom in the cyclo­hexa­none ring is disordered over two positions with a site-occupancy ratio of 0.871 (6):0.129 (6). The dihedral angles formed between the mean plane through the six C atoms of the major component of the cyclo­hexa­none ring and two benzene rings are 35.09 (10) and 34.21 (10)°; the corresponding angles for the minor component are 20.1 (2) and 19.5 (2)°. Both the major and minor disordered components of the cyclo­hexa­none ring adopt half-boat conformations. In the crystal packing, inter­molecular C—H(...)O hydrogen bonds connect the mol­ecules into a three-dimensional network.

Related literature

For natural biocides, see: Geiger & Conn (1945 [triangle]); Marian et al. (1947 [triangle]). For the biological activity and biological properties of chalcones, see: Srivastava et al. (1997 [triangle]); Kuhn & Hensel (1953 [triangle]); Hosni & Saad (1995 [triangle]); Ishida et al. (1960 [triangle]); Mehata & Parikh (1978 [triangle]); Mudaliar & Joshi (1995 [triangle]). For ring conformations, see: Cremer & Pople (1975 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o630-scheme1.jpg

Experimental

Crystal data

  • C26H30O7
  • M r = 454.50
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o630-efi1.jpg
  • a = 9.0943 (1) Å
  • b = 13.4947 (1) Å
  • c = 18.8293 (2) Å
  • β = 100.449 (1)°
  • V = 2272.50 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 296 K
  • 0.37 × 0.21 × 0.18 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.965, T max = 0.983
  • 29097 measured reflections
  • 6691 independent reflections
  • 4027 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.070
  • wR(F 2) = 0.155
  • S = 1.06
  • 6691 reflections
  • 317 parameters
  • 4 restraints
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810005192/sj2721sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005192/sj2721Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and TSH thank Universiti Sains Malaysia for the Research University Golden Goose Grant (1001/PFIZIK/811012). TSH thanks Universiti Sains Malaysia for a research assistantship. VV is grateful to DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

supplementary crystallographic information

Comment

The chemistry of chalcones has generated intensive scientific interest due to their biological and industrial applications. Chalcones are natural biocides (Geiger & Conn, 1945; Marian et al., 1947) and are well known intermediates in the synthesis of heterocyclic compounds exhibiting various biological activities (Srivastava et al., 1997; Kuhn & Hensel, 1953). Chalcones and their derivatives possess some interesting biological properties such as antibacterial (Ishida et al., 1960), antifungal (Mehata et al., 1978), insecticidal (Mudaliar & Joshi, 1995), anesthetic (Hosni & Saad, 1995), anti inflammatory, analgesic and ulcerogenic activities.

In the title compound (Fig. 1), the C12 atom is disordered over two positions with a site-occupancy ratio of 0.871 (6):0.129 (6). The dihedral angles formed between major component (C8–C11/C12A/C13) and two benzene rings (C1—C6 and C15—C20) are 35.09 (10) and 34.21 (10)°, and between the minor component (C8–C11/C12B/C13) and two benzene rings are 20.1 (2) and 19.5 (2)°. The major and minor disordered components adopt half-boat conformations (Cremer & Pople, 1975) with puckering of Q = 0.487 (2) Å, Θ = 128.3 (2) ° & [var phi] = 57.8 (3)° and Q = 0.387 (9) Å, Θ = 58.5 (9)° & [var phi] = 242.6 (9)° respectively. In the crystal packing (Fig. 2), intermolecular C12A —H12B···O1 & C25— H25B···O1 hydrogen bonds link the molecules into a 3D network.

Experimental

A mixture of cyclohexanone (0.5 mmol), 2,4,5-trimethoxybenzaldehyde (4 g) and dry ammonium acetate (0.78 g) was taken in 1:4:2 molar ratio in methanol and heated on water bath till the colour changes to reddish orange, then diethyl ether (50 mmol) was added. The mixture was allowed to stand for 24 h resulting in the formation of needle-shaped crystals. Yield: 60%. Mp: 170 °C.

Refinement

The H atoms bound to C11 and C13 were located in a difference map and then constrained to ride with the parent atoms with Uiso(H) = 1.2Uiso(C). The other H atoms were positioned geometrically. [C—H = 0.9300 to 0.9700 Å]. The C11–C12A, C11–C12B, C13–C12A & C13–C12B distances were restrained with to be equal. The distance between H1A and H13D, H20A and H11C were restrainted to be 2.01 Å.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids for the non-hydrogen atoms. Open bonds indicate the minor disordered component.
Fig. 2.
The crystal packing of the title compound, viewed along the a axis, showing the three-dimensional network. Only the major disordered component is shown.

Crystal data

C26H30O7F(000) = 968
Mr = 454.50Dx = 1.328 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7467 reflections
a = 9.0943 (1) Åθ = 2.7–30.2°
b = 13.4947 (1) ŵ = 0.10 mm1
c = 18.8293 (2) ÅT = 296 K
β = 100.449 (1)°Block, yellow
V = 2272.50 (4) Å30.37 × 0.21 × 0.18 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer6691 independent reflections
Radiation source: fine-focus sealed tube4027 reflections with I > 2σ(I)
graphiteRint = 0.036
[var phi] and ω scansθmax = 30.2°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −12→12
Tmin = 0.965, Tmax = 0.983k = −16→19
29097 measured reflectionsl = −26→26

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0429P)2 + 1.1706P] where P = (Fo2 + 2Fc2)/3
6691 reflections(Δ/σ)max < 0.001
317 parametersΔρmax = 0.24 e Å3
4 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.26290 (19)0.81506 (13)−0.25518 (8)0.0701 (5)
O20.46504 (19)0.94889 (13)−0.21805 (8)0.0677 (5)
O30.57350 (17)0.81575 (11)0.02537 (8)0.0560 (4)
O40.2953 (2)0.57310 (12)0.10823 (8)0.0769 (6)
O50.29543 (19)0.29369 (11)0.23732 (8)0.0618 (4)
O6−0.0235 (2)0.00816 (12)0.17156 (9)0.0732 (5)
O7−0.11209 (18)0.08047 (12)0.04346 (8)0.0627 (4)
C10.3099 (2)0.74316 (15)−0.13474 (11)0.0458 (5)
H1A0.23550.6960−0.14830.055*
C20.3373 (2)0.81086 (16)−0.18504 (11)0.0481 (5)
C30.4469 (2)0.88311 (16)−0.16507 (11)0.0483 (5)
C40.5267 (2)0.88492 (15)−0.09551 (11)0.0456 (5)
H4A0.60010.9328−0.08230.055*
C50.4985 (2)0.81575 (14)−0.04479 (10)0.0418 (4)
C60.3896 (2)0.74210 (14)−0.06348 (10)0.0405 (4)
C70.3571 (2)0.67221 (14)−0.00909 (10)0.0414 (4)
H7A0.38530.69310.03850.050*
C80.2925 (2)0.58240 (14)−0.01745 (10)0.0413 (4)
C90.2669 (2)0.53078 (14)0.04976 (10)0.0441 (5)
C100.2049 (2)0.42752 (14)0.04458 (10)0.0390 (4)
C110.1613 (3)0.38201 (15)−0.02935 (10)0.0502 (5)
H11A0.16990.3105−0.02530.060*0.871 (6)
H11B0.05770.3979−0.04850.060*0.871 (6)
H11C0.03640.3580−0.04550.060*0.129 (6)
H11D0.23830.3151−0.00820.060*0.129 (6)
C12A0.2580 (3)0.41870 (14)−0.08081 (12)0.0498 (8)0.871 (6)
H12A0.36100.3997−0.06320.060*0.871 (6)
H12B0.22610.3881−0.12770.060*0.871 (6)
C12B0.1315 (14)0.4496 (10)−0.0939 (6)0.082 (8)0.129 (6)
H12C0.13110.4113−0.13750.098*0.129 (6)
H12D0.03370.4797−0.09700.098*0.129 (6)
C130.2482 (3)0.52947 (15)−0.08856 (11)0.0575 (6)
H13A0.14660.5477−0.10980.069*0.871 (6)
H13B0.31300.5510−0.12120.069*0.871 (6)
H13C0.33570.4916−0.06690.069*0.129 (6)
H13D0.25190.5469−0.13440.069*0.129 (6)
C140.1980 (2)0.38183 (14)0.10713 (11)0.0437 (5)
H14A0.23380.41930.14810.052*
C150.1438 (2)0.28305 (14)0.12215 (10)0.0395 (4)
C160.1928 (2)0.24048 (14)0.19020 (10)0.0423 (4)
C170.1381 (2)0.14907 (15)0.20811 (11)0.0469 (5)
H17A0.17070.12240.25380.056*
C180.0359 (2)0.09808 (14)0.15832 (11)0.0464 (5)
C19−0.0115 (2)0.13695 (15)0.08948 (11)0.0439 (5)
C200.0398 (2)0.22886 (14)0.07311 (11)0.0433 (5)
H20A0.00410.25590.02780.052*
C210.1569 (3)0.74047 (18)−0.27866 (12)0.0603 (6)
H21A0.11410.7511−0.32850.090*
H21B0.07940.7426−0.25020.090*
H21C0.20490.6769−0.27320.090*
C220.5693 (3)1.02662 (17)−0.20014 (14)0.0640 (7)
H22A0.57031.0672−0.24190.096*
H22B0.66710.9993−0.18400.096*
H22C0.54141.0662−0.16230.096*
C230.6873 (3)0.88797 (17)0.04552 (12)0.0570 (6)
H23A0.73430.87760.09490.086*
H23B0.64390.95300.04040.086*
H23C0.76060.88200.01490.086*
C240.3591 (3)0.2507 (2)0.30446 (12)0.0772 (8)
H24A0.43240.29500.33040.116*
H24B0.40600.18910.29630.116*
H24C0.28210.23890.33220.116*
C25−0.0341 (3)−0.01589 (18)0.24289 (13)0.0663 (7)
H25A−0.0779−0.08050.24410.099*
H25B−0.09550.03220.26120.099*
H25C0.0640−0.01590.27220.099*
C26−0.1422 (3)0.10874 (19)−0.02995 (12)0.0634 (7)
H26A−0.20490.0598−0.05750.095*
H26B−0.05000.1139−0.04770.095*
H26C−0.19230.1717−0.03460.095*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0786 (11)0.0790 (12)0.0460 (9)−0.0247 (9)−0.0067 (8)0.0191 (8)
O20.0777 (11)0.0669 (11)0.0557 (10)−0.0219 (9)0.0045 (8)0.0270 (8)
O30.0667 (10)0.0512 (9)0.0453 (8)−0.0205 (7)−0.0026 (7)0.0099 (7)
O40.1479 (17)0.0475 (9)0.0382 (9)−0.0341 (10)0.0246 (9)−0.0076 (7)
O50.0905 (12)0.0490 (9)0.0402 (8)−0.0184 (8)−0.0030 (8)0.0028 (7)
O60.1228 (15)0.0437 (9)0.0548 (10)−0.0316 (9)0.0207 (10)0.0047 (7)
O70.0733 (10)0.0562 (10)0.0541 (9)−0.0266 (8)−0.0009 (8)0.0056 (7)
C10.0488 (11)0.0429 (11)0.0450 (11)−0.0095 (9)0.0067 (9)0.0055 (9)
C20.0509 (12)0.0528 (13)0.0392 (11)−0.0045 (10)0.0044 (9)0.0088 (9)
C30.0524 (12)0.0465 (12)0.0470 (12)−0.0039 (10)0.0117 (9)0.0142 (9)
C40.0463 (11)0.0394 (11)0.0506 (12)−0.0083 (9)0.0077 (9)0.0085 (9)
C50.0467 (11)0.0365 (10)0.0415 (11)−0.0021 (8)0.0064 (8)0.0047 (8)
C60.0470 (10)0.0355 (10)0.0398 (10)−0.0018 (8)0.0098 (8)0.0056 (8)
C70.0506 (11)0.0367 (10)0.0367 (10)−0.0028 (9)0.0071 (8)0.0029 (8)
C80.0546 (11)0.0352 (10)0.0358 (10)−0.0046 (9)0.0129 (8)0.0015 (8)
C90.0636 (13)0.0346 (10)0.0358 (10)−0.0067 (9)0.0133 (9)0.0000 (8)
C100.0484 (11)0.0318 (10)0.0381 (10)−0.0015 (8)0.0111 (8)0.0002 (8)
C110.0741 (14)0.0354 (11)0.0415 (11)−0.0105 (10)0.0110 (10)−0.0025 (9)
C12A0.0751 (19)0.0390 (14)0.0384 (13)−0.0028 (12)0.0182 (12)−0.0078 (10)
C12B0.11 (2)0.081 (16)0.062 (13)0.035 (14)0.026 (12)0.000 (11)
C130.0890 (17)0.0492 (13)0.0369 (11)−0.0140 (12)0.0186 (11)−0.0012 (9)
C140.0568 (12)0.0356 (10)0.0392 (10)−0.0073 (9)0.0098 (9)−0.0004 (8)
C150.0485 (11)0.0328 (10)0.0391 (10)−0.0014 (8)0.0133 (8)0.0027 (8)
C160.0551 (12)0.0354 (10)0.0380 (10)−0.0029 (9)0.0129 (8)−0.0020 (8)
C170.0694 (14)0.0356 (11)0.0367 (10)0.0006 (10)0.0126 (9)0.0051 (8)
C180.0645 (13)0.0316 (10)0.0461 (11)−0.0049 (9)0.0179 (10)0.0032 (8)
C190.0488 (11)0.0376 (11)0.0456 (11)−0.0069 (9)0.0093 (9)0.0002 (9)
C200.0484 (11)0.0404 (11)0.0410 (11)−0.0026 (9)0.0074 (8)0.0075 (8)
C210.0647 (14)0.0613 (15)0.0513 (13)−0.0012 (12)0.0007 (11)−0.0027 (11)
C220.0683 (15)0.0491 (14)0.0767 (17)−0.0051 (12)0.0186 (13)0.0241 (12)
C230.0634 (14)0.0538 (13)0.0512 (13)−0.0166 (11)0.0030 (10)−0.0013 (10)
C240.113 (2)0.0700 (17)0.0398 (13)−0.0172 (16)−0.0096 (13)0.0031 (12)
C250.0842 (17)0.0513 (14)0.0646 (15)−0.0113 (13)0.0168 (13)0.0208 (12)
C260.0717 (16)0.0591 (15)0.0535 (14)−0.0157 (12)−0.0048 (11)0.0007 (11)

Geometric parameters (Å, °)

O1—C21.372 (2)C12A—H12B0.9700
O1—C211.408 (3)C12A—H13C1.2119
O2—C31.367 (2)C12B—C131.504 (2)
O2—C221.413 (3)C12B—H12C0.9700
O3—C51.372 (2)C12B—H12D0.9700
O3—C231.422 (2)C13—H13A0.9700
O4—C91.225 (2)C13—H13B0.9700
O5—C161.369 (2)C13—H13C0.9715
O5—C241.416 (3)C13—H13D0.9016
O6—C181.369 (2)C14—C151.467 (3)
O6—C251.402 (3)C14—H14A0.9300
O7—C191.372 (2)C15—C161.401 (3)
O7—C261.412 (3)C15—C201.402 (3)
C1—C21.371 (3)C16—C171.394 (3)
C1—C61.405 (3)C17—C181.379 (3)
C1—H1A0.9300C17—H17A0.9300
C2—C31.396 (3)C18—C191.392 (3)
C3—C41.378 (3)C19—C201.380 (3)
C4—C51.392 (3)C20—H20A0.9300
C4—H4A0.9300C21—H21A0.9600
C5—C61.402 (3)C21—H21B0.9600
C6—C71.462 (3)C21—H21C0.9600
C7—C81.344 (3)C22—H22A0.9600
C7—H7A0.9300C22—H22B0.9600
C8—C91.499 (3)C22—H22C0.9600
C8—C131.506 (3)C23—H23A0.9600
C9—C101.500 (3)C23—H23B0.9600
C10—C141.341 (3)C23—H23C0.9600
C10—C111.507 (3)C24—H24A0.9600
C11—C12B1.504 (2)C24—H24B0.9600
C11—C12A1.505 (2)C24—H24C0.9600
C11—H11A0.9700C25—H25A0.9600
C11—H11B0.9700C25—H25B0.9600
C11—H11C1.1673C25—H25C0.9600
C11—H11D1.1672C26—H26A0.9600
C12A—C131.503 (2)C26—H26B0.9600
C12A—H12A0.9700C26—H26C0.9600
C2—O1—C21117.58 (17)C12B—C13—H13A62.9
C3—O2—C22118.17 (17)C8—C13—H13A109.1
C5—O3—C23117.86 (16)C12A—C13—H13B109.1
C16—O5—C24118.96 (17)C12B—C13—H13B132.5
C18—O6—C25118.51 (18)C8—C13—H13B109.1
C19—O7—C26117.20 (16)H13A—C13—H13B107.8
C2—C1—C6122.64 (19)C12A—C13—H13C53.6
C2—C1—H1A118.7C12B—C13—H13C99.5
C6—C1—H1A118.7C8—C13—H13C79.0
C1—C2—O1124.94 (19)H13A—C13—H13C162.5
C1—C2—C3119.33 (18)H13B—C13—H13C83.0
O1—C2—C3115.72 (18)C12A—C13—H13D109.9
O2—C3—C4124.73 (19)C12B—C13—H13D105.8
O2—C3—C2115.56 (18)C8—C13—H13D132.7
C4—C3—C2119.71 (18)H13A—C13—H13D74.8
C3—C4—C5120.64 (19)H13C—C13—H13D111.7
C3—C4—H4A119.7C10—C14—C15131.17 (18)
C5—C4—H4A119.7C10—C14—H14A114.4
O3—C5—C4122.63 (17)C15—C14—H14A114.4
O3—C5—C6116.53 (16)C16—C15—C20116.95 (17)
C4—C5—C6120.84 (18)C16—C15—C14119.13 (17)
C5—C6—C1116.83 (17)C20—C15—C14123.87 (17)
C5—C6—C7120.34 (17)O5—C16—C17122.59 (18)
C1—C6—C7122.73 (17)O5—C16—C15116.35 (17)
C8—C7—C6129.79 (18)C17—C16—C15121.05 (18)
C8—C7—H7A115.1C18—C17—C16120.22 (18)
C6—C7—H7A115.1C18—C17—H17A119.9
C7—C8—C9116.86 (17)C16—C17—H17A119.9
C7—C8—C13124.92 (17)O6—C18—C17123.93 (19)
C9—C8—C13118.21 (16)O6—C18—C19115.96 (18)
O4—C9—C8120.15 (17)C17—C18—C19120.11 (18)
O4—C9—C10120.45 (17)O7—C19—C20124.91 (18)
C8—C9—C10119.39 (16)O7—C19—C18115.92 (17)
C14—C10—C9116.54 (17)C20—C19—C18119.12 (18)
C14—C10—C11125.28 (17)C19—C20—C15122.47 (18)
C9—C10—C11118.13 (16)C19—C20—H20A118.8
C12B—C11—C12A47.3 (6)C15—C20—H20A118.8
C12B—C11—C10118.5 (6)O1—C21—H21A109.5
C12A—C11—C10111.96 (17)O1—C21—H21B109.5
C12B—C11—H11A131.8H21A—C21—H21B109.5
C12A—C11—H11A109.2O1—C21—H21C109.5
C10—C11—H11A109.2H21A—C21—H21C109.5
C12B—C11—H11B62.9H21B—C21—H21C109.5
C12A—C11—H11B109.2O2—C22—H22A109.5
C10—C11—H11B109.2O2—C22—H22B109.5
H11A—C11—H11B107.9H22A—C22—H22B109.5
C12B—C11—H11C86.2O2—C22—H22C109.5
C12A—C11—H11C125.3H22A—C22—H22C109.5
C10—C11—H11C115.7H22B—C22—H22C109.5
H11A—C11—H11C78.7O3—C23—H23A109.5
C12B—C11—H11D138.9O3—C23—H23B109.5
C12A—C11—H11D95.1H23A—C23—H23B109.5
C10—C11—H11D87.6O3—C23—H23C109.5
H11B—C11—H11D141.2H23A—C23—H23C109.5
H11C—C11—H11D111.6H23B—C23—H23C109.5
C13—C12A—C11111.0 (2)O5—C24—H24A109.5
C13—C12A—H12A109.4O5—C24—H24B109.5
C11—C12A—H12A109.4H24A—C24—H24B109.5
C13—C12A—H12B109.4O5—C24—H24C109.5
C11—C12A—H12B109.4H24A—C24—H24C109.5
H12A—C12A—H12B108.0H24B—C24—H24C109.5
C11—C12A—H13C120.9O6—C25—H25A109.5
H12A—C12A—H13C69.6O6—C25—H25B109.5
H12B—C12A—H13C127.5H25A—C25—H25B109.5
C13—C12B—C11111.1 (2)O6—C25—H25C109.5
C13—C12B—H12C109.4H25A—C25—H25C109.5
C11—C12B—H12C109.4H25B—C25—H25C109.5
C13—C12B—H12D109.4O7—C26—H26A109.5
C11—C12B—H12D109.4O7—C26—H26B109.5
H12C—C12B—H12D108.0H26A—C26—H26B109.5
C12A—C13—C12B47.3 (6)O7—C26—H26C109.5
C12A—C13—C8112.57 (17)H26A—C26—H26C109.5
C12B—C13—C8118.1 (6)H26B—C26—H26C109.5
C12A—C13—H13A109.1
C6—C1—C2—O1180.0 (2)C12B—C11—C12A—C1350.4 (7)
C6—C1—C2—C3−1.1 (3)C10—C11—C12A—C13−58.8 (3)
C21—O1—C2—C1−4.3 (3)C12A—C11—C12B—C13−50.4 (7)
C21—O1—C2—C3176.8 (2)C10—C11—C12B—C1344.1 (15)
C22—O2—C3—C4−2.2 (3)C11—C12A—C13—C12B−50.4 (7)
C22—O2—C3—C2177.0 (2)C11—C12A—C13—C857.7 (3)
C1—C2—C3—O2−178.7 (2)C11—C12B—C13—C12A50.4 (7)
O1—C2—C3—O20.3 (3)C11—C12B—C13—C8−45.3 (15)
C1—C2—C3—C40.6 (3)C7—C8—C13—C12A149.0 (2)
O1—C2—C3—C4179.6 (2)C9—C8—C13—C12A−29.3 (3)
O2—C3—C4—C5178.8 (2)C7—C8—C13—C12B−158.6 (7)
C2—C3—C4—C5−0.4 (3)C9—C8—C13—C12B23.1 (7)
C23—O3—C5—C4−1.9 (3)C9—C10—C14—C15179.5 (2)
C23—O3—C5—C6178.41 (19)C11—C10—C14—C15−3.1 (4)
C3—C4—C5—O3−178.9 (2)C10—C14—C15—C16158.9 (2)
C3—C4—C5—C60.7 (3)C10—C14—C15—C20−23.7 (3)
O3—C5—C6—C1178.49 (18)C24—O5—C16—C175.9 (3)
C4—C5—C6—C1−1.2 (3)C24—O5—C16—C15−174.4 (2)
O3—C5—C6—C72.0 (3)C20—C15—C16—O5179.37 (18)
C4—C5—C6—C7−177.69 (19)C14—C15—C16—O5−3.1 (3)
C2—C1—C6—C51.4 (3)C20—C15—C16—C17−0.9 (3)
C2—C1—C6—C7177.8 (2)C14—C15—C16—C17176.60 (19)
C5—C6—C7—C8−159.1 (2)O5—C16—C17—C18−179.4 (2)
C1—C6—C7—C824.6 (3)C15—C16—C17—C181.0 (3)
C6—C7—C8—C9−176.7 (2)C25—O6—C18—C1727.4 (3)
C6—C7—C8—C135.0 (4)C25—O6—C18—C19−153.5 (2)
C7—C8—C9—O44.8 (3)C16—C17—C18—O6−179.9 (2)
C13—C8—C9—O4−176.8 (2)C16—C17—C18—C191.0 (3)
C7—C8—C9—C10−175.86 (18)C26—O7—C19—C2013.3 (3)
C13—C8—C9—C102.6 (3)C26—O7—C19—C18−169.2 (2)
O4—C9—C10—C14−6.9 (3)O6—C18—C19—O70.2 (3)
C8—C9—C10—C14173.78 (19)C17—C18—C19—O7179.32 (19)
O4—C9—C10—C11175.5 (2)O6—C18—C19—C20177.82 (19)
C8—C9—C10—C11−3.9 (3)C17—C18—C19—C20−3.0 (3)
C14—C10—C11—C12B162.0 (7)O7—C19—C20—C15−179.5 (2)
C9—C10—C11—C12B−20.6 (7)C18—C19—C20—C153.1 (3)
C14—C10—C11—C12A−145.8 (2)C16—C15—C20—C19−1.1 (3)
C9—C10—C11—C12A31.6 (3)C14—C15—C20—C19−178.53 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C12A—H12B···O1i0.972.433.364 (3)160
C25—H25B···O1ii0.962.553.450 (3)156

Symmetry codes: (i) −x+1/2, y−1/2, −z−1/2; (ii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2721).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Geiger, W. B. & Conn, J. E. (1945). J. Am. Chem. Soc.67, 112–116.
  • Hosni, G. & Saad, S. F. (1995). Acta Chim. Acad. Sci. Hung.86, 263–268.
  • Ishida, S., Mastuda, A. & Kawamura, A. (1960). Chemotherapy, 8, 146–151.
  • Kuhn, R. & Hensel, H. R. (1953). Chem. Ber.86, 1333–1341.
  • Marian, D. H., Russel, P. B. & Todd, A. R. (1947). J. Chem. Soc. pp. 1419–1423.
  • Mehata, P. V. S. & Parikh, A. R. (1978). J. Indian Chem. Soc.50, 241–244.
  • Mudaliar, V. & Joshi, V. (1995). Indian J. Chem. Sect. B, 34, 456–457.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Srivastava, Y. K., Sukhwal, S., Ashawa, A. & Verma, B. L. (1997). J. Indian Chem. Soc.74, 573–574.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography