PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o585.
Published online 2010 February 10. doi:  10.1107/S1600536810003405
PMCID: PMC2983724

(E)-1,2-Bis(1-propyl-5,6-dimethyl-1H-benzimidazol-2-yl)ethene

Abstract

In the title compound, C26H32N4, the essentially planar (r.m.s. deviations of 0.0053 and 0.0242 Å) benzimidazole fragments are trans with respect to a central ethene fragment, and are canted in opposite directions by 2.78 (6) and 5.87 (6)° with respect to the ethene plane, giving the mol­ecule a propeller conformation. The terminal ethyl fragments of the pendant n-propyl groups protrude to either side of the benzimidazole planes. Overall, the mol­ecule exhibits a pseudo-center of symmetry at the mid-point of the ethene fragment. Both π–π stacking and typical C—H(...)π inter­actions are notably absent, as are inter­molecular hydrogen bonds. When viewed along the a axis, the structure appears as criss-crossed layers of mol­ecules with the planar fragments separated along the c-cell direction by the protruding ethyl groups.

Related literature

For applications of bis­(imidazoles), bis­(benzimidazoles) and their complexes with metal ions, see: Knapp et al. (1990 [triangle]); Stibrany et al. (2002 [triangle], 2003 [triangle], 2004 [triangle]); Stibrany & Potenza (2008 [triangle]). The title compound was prepared from rac-1,2-bis­(1H-5,6-dimethyl­benzimidazol-2-yl)-1-hydroxy­ethane (Taffs et al., 1961 [triangle]). Alkyl­ation was effected according to a reported method (Stibrany et al., 2004 [triangle]). For related structures see: Stibrany et al. (2005 [triangle]); Stibrany & Potenza (2006a [triangle],b [triangle], 2009 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o585-scheme1.jpg

Experimental

Crystal data

  • C26H32N4
  • M r = 400.56
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o585-efi1.jpg
  • a = 12.7822 (15) Å
  • b = 10.4802 (12) Å
  • c = 16.5944 (19) Å
  • β = 100.284 (2)°
  • V = 2187.3 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 100 K
  • 0.32 × 0.28 × 0.11 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Blessing, 1995 [triangle]) T min = 0.795, T max = 1.00
  • 20415 measured reflections
  • 4324 independent reflections
  • 3596 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.151
  • S = 1.00
  • 4324 reflections
  • 277 parameters
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT-Plus (Bruker, 2000 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and ORTEP-32 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]) and PLATON (Spek, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810003405/jh2128sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003405/jh2128Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The title compound (I) was prepared as part of our long-term interest in the chemistry of bis(imidazoles), bis(benzimidazoles), and their complexes with metal ions. These species have demonstrated their usefulness as proton sponges (Stibrany et al., 2002), geometrically constraining ligands (Stibrany et al., 2004), agents to study electron transfer (Knapp et al., 1990), polymerization catalysts (Stibrany et al., 2003), and in the formation of metal-organic copolymers (Stibrany & Potenza, 2008), The present structure (Fig. 1) contains a central, planar trans 1,2-disubstituted ethene fragment linked at the 2 positions (C12 and C22) to 1-propyl, 5,6-dimethylbenzimidazole fragments. Excluding alkyl substituents, the structure can be viewed as three essentially planar fragments connected by two hinges, the C1—C12 and C2—C22 bonds. The benzimidazole fragments are canted in opposite directions by 2.78 (6)° (bzim 1) and 5.87 (6)°(bzim2) to give the molecule a slight propeller-like shape, while the ethyl fragments of the pendant n-propyl groups, which protrude above and below the planes of the benzimidazole fragments, help to ensure that the molecule has an approximate center of symmetry at the midpoint of the C1—C2 bond.

When viewed approximately along the a cell direction (Fig.2), the structure appears as layers of criss-crossed molecules with the planar fragments separated along the c cell direction by the protruding ethyl groups. A comparative view along the b cell direction (Fig. 3) shows the protruding ethyl groups in a different orientation and indicates clearly the lack of coplanarity of the benzimidazole fragments. These figures are consistent with the absence of π–π stacking and typical C—H···π interactions found by Platon (Spek, 2009). The absences noted above are consistent with the ethyl group conformations, which appear to prevent effective overlap of the π systems. The lack of intermolecular hydrogen bonds is also attributed to the n-propyl substituents, which prevent the formation of intermolecular N(imine)··· HN(amine) hydrogen bonds.

Experimental

Compound (I) was prepared from rac-1,2-bis(1H-5,6-dimethylbenzimidazol-2-yl)-1-hydroxyethane (Taffs et al., 1961). Alkylation was effected according to a reported method (Stibrany et al., 2004). Under Ar, NaH (6 molar equivalents) was added to amixture of rac-1,2-bis(1H-5,6-dimethylbenzimidazol-2-yl)-1-hydroxyethane in dry dimethyl sulfoxide (DMSO). After a reaction time of 10 minutes, n-propyl iodide (2 molar equivalents) was added dropwise. After an additional hour, the product was precipitated with water, collected by filtration, and dried in air. Crystals of (I) (m.p. 523 (soften) 538-539 K(melt)) were obtained by slow cooling of a hot DMSO solution of (I). Rf = 0.64 (ethyl acetate/silica). IR (KBr pellet, cm-1): 2967 (w), 2785 (w), 2700(w), 1582 (s), 1431 (m), 1367 (m), 1326 (w), 1004 (w), 768 (w), 669 (w), 649(w). Compound (I) is remarkably less soluble in a variety of solvents than analogous bis(benzimidazole)ethene compounds previously reported (Stibrany et al., 2005; Stibrany & Potenza, 2006a,b; Stibrany & Potenza, 2009) which, in contrast to (I), were not substituted at the 5 and 6 positions.

Refinement

Hydrogen atoms were positioned geometrically using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq (C).

Figures

Fig. 1.
The molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are shown as spheres of arbitrary radius
Fig. 2.
The structure viewed approximately along the a cell direction. H atoms have been omitted for clarity.
Fig. 3.
The structure viewed approximately along the b cell direction. H atoms have been omitted for clarity.

Crystal data

C26H32N4F(000) = 864
Mr = 400.56Dx = 1.216 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 953 reflections
a = 12.7822 (15) Åθ = 2.3–25.6°
b = 10.4802 (12) ŵ = 0.07 mm1
c = 16.5944 (19) ÅT = 100 K
β = 100.284 (2)°Plate, yellow
V = 2187.3 (4) Å30.32 × 0.28 × 0.11 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer4324 independent reflections
Radiation source: fine-focus sealed tube3596 reflections with I > 2σ(I)
graphiteRint = 0.041
[var phi] and ω scansθmax = 26.1°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Blessing, 1995)h = −15→15
Tmin = 0.795, Tmax = 1.00k = −12→12
20415 measured reflectionsl = −20→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.090P)2 + 1.071P] where P = (Fo2 + 2Fc2)/3
4324 reflections(Δ/σ)max < 0.001
277 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N23−0.03575 (12)0.86314 (15)0.21188 (9)0.0185 (4)
N130.04680 (12)0.38211 (15)0.29290 (9)0.0184 (4)
C130.12082 (14)0.28848 (18)0.32073 (10)0.0162 (4)
N110.20831 (12)0.47168 (14)0.32962 (9)0.0164 (3)
N21−0.19800 (12)0.77194 (14)0.18947 (9)0.0164 (3)
C160.29931 (14)0.13963 (18)0.38184 (11)0.0179 (4)
C24−0.10049 (14)1.08026 (18)0.15724 (11)0.0188 (4)
H24−0.03271.12020.16770.023*
C110.22163 (14)0.34258 (17)0.34411 (10)0.0154 (4)
C21−0.21246 (14)0.89625 (18)0.16303 (10)0.0168 (4)
C26−0.29142 (15)1.08870 (18)0.10388 (11)0.0187 (4)
C170.31163 (14)0.27017 (18)0.37496 (11)0.0182 (4)
H170.37920.30930.39070.022*
C23−0.11131 (14)0.95179 (18)0.17796 (10)0.0170 (4)
C150.19728 (14)0.08225 (18)0.35742 (10)0.0175 (4)
C140.10936 (14)0.15596 (18)0.32759 (11)0.0179 (4)
H140.04160.11720.31180.021*
C25−0.18941 (15)1.14824 (18)0.12140 (11)0.0191 (4)
C120.10150 (14)0.49004 (17)0.29953 (11)0.0164 (4)
C22−0.09024 (14)0.75650 (18)0.21683 (11)0.0167 (4)
C27−0.30311 (14)0.96279 (18)0.12593 (11)0.0180 (4)
H27−0.37090.92270.11610.022*
C2−0.04547 (15)0.63331 (18)0.24519 (11)0.0186 (4)
H2−0.09180.56190.24180.022*
C10.05794 (14)0.61551 (18)0.27588 (11)0.0178 (4)
H10.10420.68720.28240.021*
C190.39431 (15)0.05820 (19)0.41661 (12)0.0221 (4)
H19A0.45800.11190.42840.033*
H19B0.4045−0.00750.37670.033*
H19C0.38210.01740.46730.033*
C180.18662 (16)−0.06113 (18)0.36216 (12)0.0228 (4)
H18A0.1118−0.08520.34570.034*
H18B0.2125−0.08950.41850.034*
H18C0.2288−0.10160.32540.034*
C28−0.17841 (16)1.28882 (19)0.10451 (13)0.0251 (5)
H28A−0.10301.31230.11500.038*
H28B−0.21611.33850.14040.038*
H28C−0.20901.30680.04720.038*
C29−0.38687 (16)1.1613 (2)0.06029 (12)0.0250 (5)
H29A−0.44961.10600.05330.037*
H29B−0.37411.18880.00650.037*
H29C−0.39891.23620.09280.037*
C6−0.28135 (14)0.67505 (18)0.17675 (11)0.0175 (4)
H6A−0.34990.71440.18290.021*
H6B−0.26450.60780.21900.021*
C30.29247 (14)0.56624 (17)0.35368 (11)0.0167 (4)
H3A0.27680.64330.31920.020*
H3B0.36110.53080.34430.020*
C40.30192 (15)0.60307 (19)0.44332 (11)0.0210 (4)
H4A0.23700.64970.45090.025*
H4B0.30670.52460.47700.025*
C50.39858 (16)0.6861 (2)0.47298 (12)0.0248 (4)
H5A0.46340.63750.47030.037*
H5B0.39860.71240.52970.037*
H5C0.39610.76180.43810.037*
C7−0.29199 (15)0.61516 (19)0.09218 (12)0.0222 (4)
H7A−0.30020.68330.05020.027*
H7B−0.22650.56690.08840.027*
C8−0.38697 (17)0.5262 (2)0.07528 (14)0.0312 (5)
H8A−0.38380.46570.12070.047*
H8B−0.38580.47930.02440.047*
H8C−0.45270.57610.06990.047*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N230.0164 (8)0.0184 (8)0.0205 (8)0.0018 (6)0.0026 (6)0.0001 (6)
N130.0171 (8)0.0177 (8)0.0194 (8)0.0012 (6)0.0008 (6)0.0012 (6)
C130.0158 (9)0.0196 (10)0.0134 (8)0.0000 (7)0.0030 (7)−0.0004 (7)
N110.0164 (8)0.0155 (8)0.0169 (7)−0.0006 (6)0.0017 (6)−0.0001 (6)
N210.0160 (8)0.0153 (8)0.0179 (7)0.0006 (6)0.0028 (6)0.0006 (6)
C160.0191 (9)0.0193 (10)0.0150 (8)0.0041 (7)0.0023 (7)0.0000 (7)
C240.0178 (9)0.0186 (10)0.0207 (9)−0.0016 (7)0.0053 (7)−0.0018 (7)
C110.0188 (9)0.0137 (9)0.0138 (8)−0.0003 (7)0.0035 (7)−0.0004 (7)
C210.0200 (9)0.0172 (9)0.0131 (8)0.0006 (7)0.0027 (7)−0.0020 (7)
C260.0204 (10)0.0193 (10)0.0163 (9)0.0032 (8)0.0032 (7)−0.0013 (7)
C170.0153 (9)0.0203 (10)0.0184 (9)−0.0006 (7)0.0012 (7)−0.0006 (7)
C230.0175 (9)0.0195 (10)0.0144 (8)0.0020 (7)0.0038 (7)−0.0012 (7)
C150.0226 (10)0.0161 (9)0.0137 (8)−0.0021 (7)0.0028 (7)0.0005 (7)
C140.0171 (9)0.0190 (10)0.0173 (9)−0.0043 (7)0.0025 (7)−0.0022 (7)
C250.0247 (10)0.0178 (10)0.0160 (9)0.0014 (8)0.0070 (7)0.0002 (7)
C120.0160 (9)0.0184 (9)0.0144 (8)−0.0002 (7)0.0015 (7)−0.0003 (7)
C220.0169 (9)0.0181 (9)0.0149 (8)0.0013 (7)0.0025 (7)−0.0014 (7)
C270.0173 (9)0.0203 (10)0.0160 (9)−0.0011 (7)0.0016 (7)−0.0022 (7)
C20.0196 (10)0.0186 (10)0.0183 (9)−0.0011 (7)0.0056 (7)−0.0003 (7)
C10.0200 (10)0.0158 (9)0.0179 (9)0.0002 (7)0.0041 (7)−0.0003 (7)
C190.0214 (10)0.0190 (10)0.0244 (10)0.0032 (8)0.0004 (8)0.0024 (8)
C180.0263 (10)0.0168 (10)0.0242 (10)−0.0014 (8)0.0014 (8)0.0001 (8)
C280.0267 (11)0.0204 (11)0.0284 (10)0.0008 (8)0.0056 (8)0.0039 (8)
C290.0247 (11)0.0237 (11)0.0252 (10)0.0037 (8)0.0010 (8)0.0033 (8)
C60.0154 (9)0.0172 (9)0.0198 (9)−0.0013 (7)0.0029 (7)0.0016 (7)
C30.0144 (9)0.0140 (9)0.0216 (9)−0.0023 (7)0.0030 (7)0.0014 (7)
C40.0226 (10)0.0190 (10)0.0221 (10)−0.0033 (8)0.0056 (8)−0.0007 (8)
C50.0255 (10)0.0245 (11)0.0236 (10)−0.0039 (9)0.0022 (8)−0.0044 (8)
C70.0245 (10)0.0189 (10)0.0226 (10)0.0014 (8)0.0028 (8)−0.0011 (8)
C80.0253 (11)0.0297 (12)0.0370 (12)0.0001 (9)0.0013 (9)−0.0121 (10)

Geometric parameters (Å, °)

N23—C221.327 (2)C2—H20.9500
N23—C231.385 (2)C1—H10.9500
N13—C121.324 (2)C19—H19A0.9800
N13—C131.384 (2)C19—H19B0.9800
C13—C111.398 (2)C19—H19C0.9800
C13—C141.403 (3)C18—H18A0.9800
N11—C111.379 (2)C18—H18B0.9800
N11—C121.381 (2)C18—H18C0.9800
N11—C31.465 (2)C28—H28A0.9800
N21—C211.377 (2)C28—H28B0.9800
N21—C221.381 (2)C28—H28C0.9800
N21—C61.460 (2)C29—H29A0.9800
C16—C171.384 (3)C29—H29B0.9800
C16—C151.428 (3)C29—H29C0.9800
C16—C191.512 (3)C6—C71.521 (3)
C24—C251.383 (3)C6—H6A0.9900
C24—C231.403 (3)C6—H6B0.9900
C24—H240.9500C3—C41.521 (3)
C11—C171.397 (3)C3—H3A0.9900
C21—C271.397 (3)C3—H3B0.9900
C21—C231.399 (3)C4—C51.519 (3)
C26—C271.385 (3)C4—H4A0.9900
C26—C251.428 (3)C4—H4B0.9900
C26—C291.508 (3)C5—H5A0.9800
C17—H170.9500C5—H5B0.9800
C15—C141.381 (3)C5—H5C0.9800
C15—C181.512 (3)C7—C81.517 (3)
C14—H140.9500C7—H7A0.9900
C25—C281.511 (3)C7—H7B0.9900
C12—C11.454 (3)C8—H8A0.9800
C22—C21.456 (3)C8—H8B0.9800
C27—H270.9500C8—H8C0.9800
C2—C11.342 (3)
C22—N23—C23104.73 (15)H19A—C19—H19B109.5
C12—N13—C13104.98 (15)C16—C19—H19C109.5
N13—C13—C11110.28 (16)H19A—C19—H19C109.5
N13—C13—C14130.83 (17)H19B—C19—H19C109.5
C11—C13—C14118.90 (17)C15—C18—H18A109.5
C11—N11—C12106.44 (15)C15—C18—H18B109.5
C11—N11—C3123.67 (15)H18A—C18—H18B109.5
C12—N11—C3129.41 (15)C15—C18—H18C109.5
C21—N21—C22106.56 (15)H18A—C18—H18C109.5
C21—N21—C6124.01 (15)H18B—C18—H18C109.5
C22—N21—C6128.73 (15)C25—C28—H28A109.5
C17—C16—C15120.30 (17)C25—C28—H28B109.5
C17—C16—C19119.60 (17)H28A—C28—H28B109.5
C15—C16—C19120.09 (17)C25—C28—H28C109.5
C25—C24—C23119.38 (17)H28A—C28—H28C109.5
C25—C24—H24120.3H28B—C28—H28C109.5
C23—C24—H24120.3C26—C29—H29A109.5
N11—C11—C17131.66 (17)C26—C29—H29B109.5
N11—C11—C13105.69 (16)H29A—C29—H29B109.5
C17—C11—C13122.65 (17)C26—C29—H29C109.5
N21—C21—C27131.78 (17)H29A—C29—H29C109.5
N21—C21—C23105.66 (15)H29B—C29—H29C109.5
C27—C21—C23122.53 (17)N21—C6—C7111.30 (15)
C27—C26—C25120.02 (17)N21—C6—H6A109.4
C27—C26—C29119.42 (17)C7—C6—H6A109.4
C25—C26—C29120.55 (17)N21—C6—H6B109.4
C16—C17—C11117.96 (17)C7—C6—H6B109.4
C16—C17—H17121.0H6A—C6—H6B108.0
C11—C17—H17121.0N11—C3—C4111.38 (14)
N23—C23—C21110.38 (16)N11—C3—H3A109.4
N23—C23—C24130.64 (17)C4—C3—H3A109.4
C21—C23—C24118.97 (17)N11—C3—H3B109.4
C14—C15—C16120.66 (17)C4—C3—H3B109.4
C14—C15—C18119.97 (17)H3A—C3—H3B108.0
C16—C15—C18119.34 (17)C5—C4—C3112.34 (16)
C15—C14—C13119.53 (17)C5—C4—H4A109.1
C15—C14—H14120.2C3—C4—H4A109.1
C13—C14—H14120.2C5—C4—H4B109.1
C24—C25—C26120.87 (17)C3—C4—H4B109.1
C24—C25—C28119.06 (17)H4A—C4—H4B107.9
C26—C25—C28120.01 (17)C4—C5—H5A109.5
N13—C12—N11112.60 (16)C4—C5—H5B109.5
N13—C12—C1125.38 (16)H5A—C5—H5B109.5
N11—C12—C1121.99 (16)C4—C5—H5C109.5
N23—C22—N21112.63 (16)H5A—C5—H5C109.5
N23—C22—C2125.90 (16)H5B—C5—H5C109.5
N21—C22—C2121.45 (16)C8—C7—C6111.16 (16)
C26—C27—C21118.16 (17)C8—C7—H7A109.4
C26—C27—H27120.9C6—C7—H7A109.4
C21—C27—H27120.9C8—C7—H7B109.4
C1—C2—C22123.34 (18)C6—C7—H7B109.4
C1—C2—H2118.3H7A—C7—H7B108.0
C22—C2—H2118.3C7—C8—H8A109.5
C2—C1—C12122.13 (18)C7—C8—H8B109.5
C2—C1—H1118.9H8A—C8—H8B109.5
C12—C1—H1118.9C7—C8—H8C109.5
C16—C19—H19A109.5H8A—C8—H8C109.5
C16—C19—H19B109.5H8B—C8—H8C109.5
C12—N13—C13—C11−0.16 (19)C23—C24—C25—C26−1.2 (3)
C12—N13—C13—C14−179.65 (18)C23—C24—C25—C28175.89 (17)
C12—N11—C11—C17−179.41 (18)C27—C26—C25—C242.7 (3)
C3—N11—C11—C17−6.7 (3)C29—C26—C25—C24−176.39 (17)
C12—N11—C11—C130.71 (18)C27—C26—C25—C28−174.33 (17)
C3—N11—C11—C13173.39 (15)C29—C26—C25—C286.6 (3)
N13—C13—C11—N11−0.36 (19)C13—N13—C12—N110.6 (2)
C14—C13—C11—N11179.20 (15)C13—N13—C12—C1178.64 (17)
N13—C13—C11—C17179.75 (16)C11—N11—C12—N13−0.9 (2)
C14—C13—C11—C17−0.7 (3)C3—N11—C12—N13−172.99 (16)
C22—N21—C21—C27176.43 (18)C11—N11—C12—C1−178.96 (16)
C6—N21—C21—C275.3 (3)C3—N11—C12—C18.9 (3)
C22—N21—C21—C23−1.54 (18)C23—N23—C22—N21−1.3 (2)
C6—N21—C21—C23−172.65 (15)C23—N23—C22—C2176.97 (16)
C15—C16—C17—C110.4 (3)C21—N21—C22—N231.9 (2)
C19—C16—C17—C11−178.72 (16)C6—N21—C22—N23172.42 (16)
N11—C11—C17—C16−179.49 (18)C21—N21—C22—C2−176.52 (16)
C13—C11—C17—C160.4 (3)C6—N21—C22—C2−6.0 (3)
C22—N23—C23—C210.30 (19)C25—C26—C27—C21−1.9 (3)
C22—N23—C23—C24−178.94 (18)C29—C26—C27—C21177.25 (16)
N21—C21—C23—N230.80 (19)N21—C21—C27—C26−178.11 (18)
C27—C21—C23—N23−177.40 (15)C23—C21—C27—C26−0.4 (3)
N21—C21—C23—C24−179.86 (15)N23—C22—C2—C15.1 (3)
C27—C21—C23—C241.9 (3)N21—C22—C2—C1−176.72 (17)
C25—C24—C23—N23178.11 (17)C22—C2—C1—C12−176.52 (16)
C25—C24—C23—C21−1.1 (3)N13—C12—C1—C20.9 (3)
C17—C16—C15—C14−0.8 (3)N11—C12—C1—C2178.73 (16)
C19—C16—C15—C14178.29 (16)C21—N21—C6—C783.2 (2)
C17—C16—C15—C18177.44 (17)C22—N21—C6—C7−85.9 (2)
C19—C16—C15—C18−3.5 (2)C11—N11—C3—C4−81.9 (2)
C16—C15—C14—C130.5 (3)C12—N11—C3—C489.0 (2)
C18—C15—C14—C13−177.76 (16)N11—C3—C4—C5171.72 (15)
N13—C13—C14—C15179.71 (17)N21—C6—C7—C8−173.22 (16)
C11—C13—C14—C150.3 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2128).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Bruker (2000). SAINT-Plus and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Knapp, S., Keenan, T. P., Zhang, X., Fikar, R., Potenza, J. A. & Schugar, H. J. (1990). J. Amer. Chem. Soc.112, 3452–3464
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst D65, 148–155. [PMC free article] [PubMed]
  • Stibrany, R. T., Lobanov, M. V., Schugar, H. J. & Potenza, J. A. (2004). Inorg. Chem.43, 1472–1480. [PubMed]
  • Stibrany, R. T. & Potenza, J. A. (2006a). Acta Cryst. E62, o828–o830.
  • Stibrany, R. T. & Potenza, J. A. (2006b). Private communication (reference number CCDC 619256) to the Cambridge Structural Database. CCDC, Union Road, Cambridge, England.
  • Stibrany, R. T. & Potenza, J. A. (2008). Acta Cryst. C64, m213–m216. [PubMed]
  • Stibrany, R. T. & Potenza, J. A. (2009). Private communication (reference number CCDC 717040) to the Cambridge Structural Database. CCDC, Union Road, Cambridge, England.
  • Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2002). Acta Cryst. E58, o1142–o1144.
  • Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2005). Acta Cryst. C61, o354–o357. [PubMed]
  • Stibrany, R. T., Schulz, D. N., Kacker, S., Patil, A. O., Baugh, L. S., Rucker, S. P., Zushma, S., Berluche, E. & Sissano, J. A. (2003). Macromolecules, 36, 8584–8586.
  • Taffs, K. H., Prosser, L. V., Wigton, F. B. & Joullie, M. M. (1961). J. Org. Chem.26, 462-467.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography