PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o536.
Published online 2010 February 6. doi:  10.1107/S1600536810003417
PMCID: PMC2983723

(3-Phenyl­isoxazol-5-yl)methanol

Abstract

In the title compound, C10H9NO2, the isoxazole and phenyl rings form a dihedral angle of 25.82 (3)°. In the crystal, inter­molecular O—H(...)O hydrogen bonds link the mol­ecules into ribbons propagating along [001]. The crystal packing is further stabilized by weak C—H(...)O and C—H(...)N inter­actions.

Related literature

For related structures, see: Tian & Li (2006 [triangle]); Tang et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o536-scheme1.jpg

Experimental

Crystal data

  • C10H9NO2
  • M r = 175.18
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o536-efi1.jpg
  • a = 41.03 (4) Å
  • b = 5.694 (5) Å
  • c = 7.348 (7) Å
  • β = 98.51 (2)°
  • V = 1698 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 298 K
  • 0.55 × 0.45 × 0.02 mm

Data collection

  • Bruker SMART APEX diffractometer
  • 3328 measured reflections
  • 1500 independent reflections
  • 1182 reflections with I > 2σ(I)
  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.119
  • S = 1.05
  • 1500 reflections
  • 118 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810003417/cv2692sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003417/cv2692Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors express sincere gratitude to Xi-Zhao Wang for valuable discussions on the preparation of this manuscript.

supplementary crystallographic information

Comment

In continuation of our study of isoxazole derivatives (Tang et al., 2006), we present here the crystal structure of the title compound, (I).

In (I) (Fig. 1), the bond lengths and angles of the isoxazole ring are normal and comparable to those reported for related structures (Tian & Li, 2006; Tang et al., 2006). The mean planes of the benzene (C1—C6) and isoxazole (C7—C9/N1/O1) rings make a dihedral angle of 25.82 (3)°. Intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into ribbons extended along the c axis. The crystal packing is further stabilized by weak C—H···O and C—H···N interactions (Table 1).

Experimental

A round-bottomed flask was charged with benzaldoxime(5.0 g, 41.3 mmol) in 20 ml N, N-dimethyl formamide, and then N-chlorosuccinimide (1.20 g, 9.1 mmol) was added to the solution. Heating until N-chlorosuccinimide was solved, and the mixture was stirred at room temperature for 20 min, into the above solution was added N-chlorosuccinimide (4.80 g, 36.4 mmol) in batches under 308 K. After 3 h, propargyl alcohol ( 2.78 g, 49.6 mmol) was added, then the saturated solution of CuSO4.5H2O (0.62 g, 2.48 mmol) and L-ascorbic acid (1.75 g, 9.92 mmol) were added also. The solution of K2CO3 (3.14 g, 45.5 mmol) was added to the mixture and was stirred for 1 h. The reaction mixture was diluted with the saturated solution of ethylenediaminetetraacetic acid, and then was extracted with dichloromethane (3 times per 50 ml), and the extracts were dried over anhydrous Na2SO4. The solution was evaporated to afford a residue, which was purified by a silica-gel column chromatography (petroleum ether / ethyl acetate, 3:1 by volume) to afford a pale yellow solid (yield: 61.7%, m.p. 325–326 K). The crystals of (I) were obtained from petroleum ether / ethyl acetate / dichloromethane (3:1:1, V/V/V) by slow evaporation at room temperature.

Refinement

All H atoms were placed in calculated positions, with C—H = 0.93 or 0.97 Å, O—H = 0.86, 0.88 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2-1.5Ueq(C, O) The hydroxyl H atom was treated as disordered over two positions with equal occupancies fixed to 0.5.

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms.

Crystal data

C10H9NO2F(000) = 736
Mr = 175.18Dx = 1.371 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1357 reflections
a = 41.03 (4) Åθ = 3.0–28.1°
b = 5.694 (5) ŵ = 0.10 mm1
c = 7.348 (7) ÅT = 298 K
β = 98.51 (2)°Plate, colourless
V = 1698 (3) Å30.55 × 0.45 × 0.02 mm
Z = 8

Data collection

Bruker SMART APEX diffractometer1182 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
graphiteθmax = 25.1°, θmin = 2.0°
phi and ω scansh = −48→43
3328 measured reflectionsk = −6→5
1500 independent reflectionsl = −8→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0354P)2 + 0.7771P] where P = (Fo2 + 2Fc2)/3
1500 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.15963 (5)0.9135 (4)0.2841 (2)0.0424 (5)
H10.14391.02930.24970.051*
C20.19149 (5)0.9476 (4)0.2556 (3)0.0470 (6)
H20.19731.08550.20090.056*
C30.21488 (5)0.7785 (4)0.3078 (3)0.0484 (6)
H30.23660.80220.28890.058*
C40.20619 (5)0.5744 (4)0.3878 (3)0.0457 (6)
H40.22210.46040.42370.055*
C50.17421 (5)0.5374 (4)0.4152 (2)0.0403 (5)
H50.16850.39800.46820.048*
C60.15054 (5)0.7074 (3)0.3639 (2)0.0352 (5)
C70.11668 (5)0.6746 (4)0.4006 (2)0.0370 (5)
C80.09363 (5)0.8478 (4)0.4305 (3)0.0438 (5)
H80.09611.00980.42360.053*
C90.06769 (5)0.7318 (4)0.4705 (3)0.0460 (6)
C100.03668 (5)0.8061 (5)0.5327 (3)0.0629 (7)
H10A0.03770.76460.66150.076*
H10B0.03500.97570.52370.076*
N10.10486 (4)0.4641 (3)0.4183 (2)0.0501 (5)
O10.07313 (3)0.4982 (3)0.4643 (2)0.0543 (4)
O20.00792 (4)0.7069 (3)0.4334 (3)0.0808 (6)
H2B0.00460.55890.43960.121*0.50
H2A0.01670.66980.33500.121*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0450 (13)0.0391 (13)0.0412 (10)−0.0012 (10)−0.0003 (9)0.0019 (10)
C20.0546 (14)0.0453 (14)0.0412 (11)−0.0104 (12)0.0076 (9)0.0033 (10)
C30.0405 (12)0.0642 (17)0.0415 (11)−0.0082 (12)0.0098 (9)−0.0076 (11)
C40.0425 (13)0.0513 (16)0.0438 (11)0.0086 (11)0.0081 (9)−0.0007 (11)
C50.0471 (12)0.0362 (13)0.0377 (10)0.0027 (10)0.0066 (8)0.0018 (9)
C60.0393 (11)0.0346 (12)0.0308 (9)−0.0001 (10)0.0018 (7)−0.0019 (8)
C70.0381 (11)0.0332 (12)0.0384 (10)−0.0013 (10)0.0015 (8)−0.0001 (9)
C80.0378 (12)0.0346 (13)0.0571 (12)0.0000 (11)0.0006 (9)−0.0002 (10)
C90.0384 (12)0.0413 (14)0.0562 (12)0.0046 (11)0.0001 (9)−0.0029 (11)
C100.0400 (13)0.0669 (19)0.0812 (16)0.0018 (13)0.0068 (11)−0.0049 (14)
N10.0402 (11)0.0408 (12)0.0702 (11)0.0002 (9)0.0112 (8)0.0017 (9)
O10.0395 (9)0.0458 (11)0.0781 (10)−0.0054 (8)0.0105 (7)0.0018 (8)
O20.0340 (9)0.0818 (15)0.1241 (15)−0.0034 (9)0.0039 (9)−0.0057 (12)

Geometric parameters (Å, °)

C1—C21.368 (3)C7—N11.306 (3)
C1—C61.387 (3)C7—C81.406 (3)
C1—H10.9300C8—C91.322 (3)
C2—C31.373 (3)C8—H80.9300
C2—H20.9300C9—O11.351 (3)
C3—C41.373 (3)C9—C101.476 (3)
C3—H30.9300C10—O21.410 (3)
C4—C51.373 (3)C10—H10A0.9700
C4—H40.9300C10—H10B0.9700
C5—C61.383 (3)N1—O11.406 (2)
C5—H50.9300O2—H2B0.8561
C6—C71.466 (3)O2—H2A0.8798
C2—C1—C6120.5 (2)N1—C7—C6120.73 (18)
C2—C1—H1119.7C8—C7—C6128.09 (19)
C6—C1—H1119.7C9—C8—C7105.4 (2)
C1—C2—C3120.1 (2)C9—C8—H8127.3
C1—C2—H2119.9C7—C8—H8127.3
C3—C2—H2119.9C8—C9—O1110.0 (2)
C2—C3—C4119.9 (2)C8—C9—C10133.2 (2)
C2—C3—H3120.1O1—C9—C10116.5 (2)
C4—C3—H3120.1O2—C10—C9114.7 (2)
C5—C4—C3120.4 (2)O2—C10—H10A108.6
C5—C4—H4119.8C9—C10—H10A108.6
C3—C4—H4119.8O2—C10—H10B108.6
C4—C5—C6120.1 (2)C9—C10—H10B108.6
C4—C5—H5120.0H10A—C10—H10B107.6
C6—C5—H5120.0C7—N1—O1105.53 (16)
C5—C6—C1119.00 (19)C9—O1—N1107.91 (15)
C5—C6—C7120.49 (19)C10—O2—H2B119.6
C1—C6—C7120.46 (18)C10—O2—H2A96.2
N1—C7—C8111.11 (19)H2B—O2—H2A84.0
C6—C1—C2—C3−0.7 (3)N1—C7—C8—C91.2 (2)
C1—C2—C3—C40.3 (3)C6—C7—C8—C9−175.60 (17)
C2—C3—C4—C50.4 (3)C7—C8—C9—O1−0.9 (2)
C3—C4—C5—C6−0.7 (3)C7—C8—C9—C10173.2 (2)
C4—C5—C6—C10.4 (3)C8—C9—C10—O2131.4 (3)
C4—C5—C6—C7−177.04 (16)O1—C9—C10—O2−54.8 (3)
C2—C1—C6—C50.3 (3)C8—C7—N1—O1−1.0 (2)
C2—C1—C6—C7177.73 (16)C6—C7—N1—O1176.11 (15)
C5—C6—C7—N1−24.9 (3)C8—C9—O1—N10.4 (2)
C1—C6—C7—N1157.73 (18)C10—C9—O1—N1−174.81 (17)
C5—C6—C7—C8151.63 (19)C7—N1—O1—C90.4 (2)
C1—C6—C7—C8−25.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2B···O2i0.861.892.669 (4)151
O2—H2A···O2ii0.882.092.677 (5)124
C8—H8···N1iii0.932.613.542 (4)177
C10—H10B···O2iv0.972.583.352 (4)137

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, y, −z+1/2; (iii) x, y+1, z; (iv) −x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2692).

References

  • Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tang, L.-D., Zhang, D.-T., Sun, F.-G., Duan, G.-Y. & Wang, J.-W. (2006). Acta Cryst. E62, o1298–o1299.
  • Tian, D.-M. & Li, X. (2006). Acta Cryst. E62, o5335–o5336.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography